
High-SNR Capacity of AWGN Channels
with Generic Alphabet Constraints

a dissertation presented
by

Ian Weiner
to

The Harvard John A. Paulson School of Engineering and Applied
Sciences

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in the subject of

Applied Mathematics

Harvard University
Cambridge, Massachusetts

January 2017

This material is based upon work supported under Air Force Contract No. FA8721-05-C-0002
and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the U.S.
Air Force.



©2017 – Ian Weiner
all rights reserved.



Thesis advisor: Professor Vahid Tarokh Ian Weiner

High-SNR Capacity of AWGN Channels with Generic
Alphabet Constraints

Abstract

We present a generalized notion of entropy taken with respect to a measure in a

coordinate-independent manner and prove several novel entropy convergence theorems.

A particular focus is entropy of random variables on smooth submanifolds of RN .

We apply these results to computing the information capacity of an AWGN channel

whose alphabet is constrained to an n-dimensional smooth submanifold of RN . Such

submanifolds are shown to arise naturally when coding alphabets in RN are subjected

to a set of smooth constraint functions. The asymptotic capacity in the high-SNR

limit is computed for such AWGN channels with manifold constraints in two variants:

a compact alphabet manifold, and a non-compact scale-invariant alphabet manifold

with an additional average power constraint on the input distribution. The high-SNR

capacity expression resembles Shannon’s famous Gaussian channel capacity formula,

with an additional constant term determined by the geometry of the alphabet con-

straint manifold– namely, a volume derived from the manifold.
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We apply the above theory in a study of the channel capacity of radar pulse wave-

forms. In our model, each radar pulse also constitutes a code letter for transmission

of information. It is desirable in this context to constrain the alphabet of waveforms

to those particularly suited to efficient and effective radar signal processing, giving

rise to a channel described by the above work. We numerically compute the volume

component of our asymptotic capacity expression for a plausible range of performance

characteristics of the radar signal processing. We plot curves that show the inherent

trade-off for our radar between signal processing performance and channel capacity.
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Glossary of Notation

Basic Notation

k ∈ {0, 1, . . . }, v ∈ Rk, S ⊂ Rk, a ∈ R, r ≥ 0.

• |v| is the standard Euclidean vector norm.

• |S| is the standard k-dimensional Euclidean volume of S.

• Bk
r (v0) := {v ∈ Rk : |v − v0| < r}, the open ball of radius r in Rk centered at v0.

Bk
r := Bk

r (0). Bk := Bk
1 (0).

• Bk
r (S) :=

∪
v∈S B

k
r (v), all points within Euclidean distance r of the set S.

• ωk :=
∣∣Bk

1

∣∣ = πk/2[Γ(1 + k/2)]−1 (ω0 ≡ 1).

• κN,k :=
NNΓ(1+k/2)Γ(1+(N−k)/2)
kk(N−k)N−kΓ(1+N/2)

= NNωN

kkωk(N−k)N−kωN−k
.

• ∂Bk+1
r ≡ Skr := {v ∈ Rk+1 : |v| = r}, the k-sphere of radius r.

• aS := {av : v ∈ S}.

• a1 ∨ a2 := max{a1, a2} and a1 ∧ a2 := min{a1, a2}.

• We take log to base e unless otherwise noted; log+a := (log a) ∨ 0.
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Geometric Notation

W is a smooth n-dimensional submanifold of RN , w ∈ W, τ is a tangent vector at a

point.

• dW(w0, w1) is the geodesic distance between w0 and w1 (= ∞ if there is no

connecting geodesic).

• BW
r (w0) := {w ∈ W : dW(w0, w) < r}, the geodesic ball at w0 of radius r.

• V n is the n-dimensional volume measure induced on W by the Euclidean metric

of RN .

• Jw = dV n

dmn , the Jacobian factor in a geodesic normal coordinate system centered

on w ∈ W.

• Θ = dmN

dmn′dV n is the Jacobian factor for Euclidean N -volume in the tubular

parameterization.

Notation for Measures, Functions, and Norms

(M,Σ, µ) is a σ-finite measure space with µ ≥ 0, S ∈ Σ is a measurable set, P a

probability measure on M, f : M → [−∞,∞] is µ-measurable, b ∈ [1,∞].

• P(M) is the set of positive measures on M.

• P̂(M) is the set of probability measures on M.

• P(µ) := {µ-measurable f : f ≥ 0}.

• P̂(µ) := {f ∈ P(µ) : ∥f∥1 = 1}, probability densities w.r.t. µ.
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• [Abuse of notation] P ∈ P̂(µ) means that P ≪ µ and dP
dµ ∈ P̂(µ).

• P ⊥ Q means the probability measures P and Q are independent.

• 1S is the indicator function of the set S.

• ∥f∥b is the Lb(µ) norm of f .

• ∥f∥b;S := ∥1Sf∥b.

• L1
+(µ) := {f ∈ L1(µ) : f ≥ 0}.

Notation Related to the Normal Distribution

• φk,ε(r) := (2πε2)−k/2e−r
2/2ε2 , the Gaussian pdf on Rk, with zero mean and

variance ε2Ik, evaluated at |v| = r.

• χk,ε(r) := kωkr
k−1φkε(r), the pdf of |Z| when Z ∼ N (0, ε2Ik).

• Φn,R :=
∫ R
0 χk,ε, the probability of |Z| ≤ R when Z ∼ N (0, ε2Ik).

• φ
(R)
k,ε (r) := Φ−1

n,R/ε1[0,R](r)φn,ε(r)

• χ
(R)
k,ε := Φ−1

n,R/ε1[0,R]χk,ε, the χk,ε pdf conditioned on r ≤ R.
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1
Introduction

This dissertation consists of three contributions to the Information Theory literature,

each leveraging the results of its predecessor.

1.1 Generalized Entropy

The first contribution is the investigation of a generalized definition of entropy with

respect to a mathematical measure, which subsumes both the discrete and differential

entropy of classical information theory. Specifically, for a probability measure PX and
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a positive measure µ, if the Radon-Nikodym derivative dP
dµ exists, we define

hµ(PX) := −E
[
log

dP

dµ
(X)

]

If dµ = dx, the standard Lebesgue measure on R, this is the standard differential

entropy, while if µ is the counting measure on N it reduces to the discrete entropy.

We rigorously prove several powerful theorems in this context. Our focus is the

bounding and estimation of entropy differences |h(p)− h(q)|, in terms of the difference

of probability density functions |p− q|, namely its Lb norm for 1 < b ≤ ∞ and Lα

semi-norm for α ∈ (0, 1). We further prove that the Lα semi-norm may be replaced in

most cases by a certain weighted norm of the form

∥PX∥(δ);a := E
[
(1 + a|X|)δ

]

where a, δ are positive real numbers. This particular norm proves to be extremely con-

venient for our bounds by virtue of its connection to average power constraints. Most

of our results appear to be novel to the Information Theory literature, even when re-

duced to the special cases of the classical discrete and differential entropies.

The primary motivation for our more abstract definition of entropy is coordinate

independence; It has no reference to a fixed coordinate system. This property is essen-

tial to the study of entropy when the natural probability space of interest is a smooth

manifold, which typically cannot be fully parameterized under any single fixed coor-

dinate system, but rather relies upon a patchwork of local parameterizations. While

this may seem esoteric, it is precisely the situation that arises naturally from the chan-

nel capacity problem described in the subsequent section, whose solution in the high-

2



SNR regime with AWGN is the second contribution of this dissertation.

1.2 Channel Capacity with Generic Alphabet Constraints

Before stating the problem of interest, we first recall the standard (real, memoryless)

N -dimensional communications channel RN → RN with additive Gaussian noise:

Y = X + Z, with X,Y, Z ∈ RN , Z ∼ N (0,Σ) with Z ⊥ X and Σ is the N × N

covariance matrix of Z ∈ RN . For example, this channel is often used to model a

band-limited communications system of time-bandwidth product WT ≈ N . In order

to avoid confusion it is important here to emphasize that we are taking the perspec-

tive of a fixed dimension N , with each N -tuple (X1, . . . , XN ) collectively representing

a single, discretely transmitted letter of a code. A code of length L from this perspec-

tive may be considered a vector in RLN . Let us use X(l) ∈ RN to denote the lth letter

transmitted, and X
(l)
k ∈ R to denote its kth component. An average power constraint

on the transmitted codes is of the form
∑L

l=1

∑N
k=1

∣∣∣X(l)
k

∣∣∣2 ≤ LNP, where P is a fixed

constant. Writing |X|2 ≡
∑

|Xk|2, the average power constraint in the limit of L→ ∞

is equivalent to the input distribution constraint E|X|2 ≤ NP. The capacity of this

channel with white noise Σ = ε2IN was found by Shannon[12] to be N
2 log

(
1 + P

ε2

)
nats per transmission. Hence, for a sufficiently large code length L, there are codes,

with arbitrarily small probability of decoding error, that transmit information at any

rate below this, but no higher.

With this starting point, we prove how to rigorously approximate channel capacity

in the AWGN case when it is subjected to additional generic alphabet constraints. By

this we mean that the alphabet of possible X is restricted to a proper subset X ⫋ RN

which is defined by a generic set of constraint functions Fj : RN → R for j = 1, . . . , J

3



and corresponding constraint values bj . The corresponding alphabet constraints im-

posed can be any of the form

Fj

(
X

|X|

)
⋛ bj , j = 1, 2, . . . , J (1.2.1)

where we are free to choose from the relations >,≥,=,≤, or ≤ individually for each j

as appropriate for the application. With these fixed, the alphabet set X is defined to

be all X ∈ RN satisfying (1.2.1). Note that the constraints are scale-independent, so

may properly be considered as generic functions on the unit sphere SN−1 ⊂ RN . The

only assumption required on the Fj is that they are smooth (in fact, our results only

require them to be C2, but we assume C∞ smoothness for simplicity). The choice

of the bj is also permitted to be nearly arbitrary in our formulation, with the under-

standing that certain choices result in X = ∅.

After accounting for some minor technical details, it is shown that the generic

form of X defined by such constraints is an n-dimensional submanifold (possibly with

boundary) of the ambient space RN , where 0 ≤ n ≤ N . (These terms, and much more,

are reviewed in Chapter 2) below.) Due to the scale-invariance of the constraints, X

in fact consists of all scalar multiples of an (n−1)-dimensional submanifold Ω ⊂ SN−1.

By bringing techniques and results of differential geometry to bear on our analysis,

and considering the entropy hV n(PX), defined with respect to V n, the n-dimensional

volume measure of X , we derive the asymptotic capacity of this alphabet-constrained

channel in the high-SNR limit, subject to the average power constraint E|X|2 ≤ nP.

For ε≪ P, we prove that

Cap(ε) ≈ n

2
log

(
1 +

P

ε2

)
+ log

V n−1(Ω)

V n−1(Sn−1)

4



Moreover, a fixed, simple, explicitly defined input distribution PX is shown to asymp-

totically achieve this capacity as ε → 0. Namely, PX is independent of X̂ := X/|X|,

and |X| is distributed as a χ distribution in n variables with E|X|2 = nP.

In the process of proving this, two other notable results are obtained: First, a cor-

responding asymptotic capacity result for the AWGN channel with arbitrary compact

alphabet constraint manifold X (again, possibly with boundary). This result makes

no assumptions of scale-invariance, and also does not consider any average power con-

straint. Second, a general expression for the high-SNR approximation of h(PY ) in

terms of hV n(PX) whenever PX satisfies certain technical “niceness” conditions (which

include being twice differentiable, for example).

1.3 Application: High-SNR Capacity of a Radar Waveform Channel

We demonstrate the power of our theoretical results above by applying them to the

original question that motivated the work: How much information can be transmit-

ted in a radar waveform? This question is motivated by a vision of efficient spectrum

sharing between radar systems and wireless communications systems.

We focus our analysis on radars that operate by transmitting a series of discrete,

high power pulses, each constituting a code letter in our existing framework, and the

dimension N determined by the time-bandwidth product of the pulses. In order to

transmit more information, a large alphabet of potential pulses is desirable. On the

other hand, the radar signal processing is most effective for a small class of waveforms

that possess optimal characteristics for filtering and target detection. Our goal is to

quantify this trade-off between these dual missions of radar performance and informa-

tion transfer.
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We constrain our radar waveform alphabet as follows: for a given candidate wave-

form, radar target range is processed by a linear time-invariant filter; The constraint

function on our alphabet quantifies the optimal performance of such filters in terms

of gain on target and the reduction of interference due to filter bank cross-correlation

(range sidelobes). The form of this constraint function is quite difficult to analyze in

closed form for the purposes of applying our geometric theory, but straightforward to

evaluate numerically for specific radar parameters. Choosing a representative set of

parameters, we implement a numerical Monte-Carlo routine to compute the constant

term log V n−1(Ω)
V n−1(Sn−1)

in our asymptotic capacity expression. From this we obtain a se-

ries of plots quantifying the radar performance/information capacity trade-off.

1.4 Structure of the Dissertation

Chapter 2 is a review of smooth manifolds and other terminology and results from dif-

ferential geometry which will be needed for our work. Most results are standard and

offered with references instead of proofs. A few results are proven directly because

good references seemed elusive, but we make no claim of originality to those results.

Chapter 3 begins our original work, introducing entropy with respect to a measure.

Sections 3.1 and 3.2 are applicable in very general settings. Section 3.4 converts this

into results suitable for submanifolds and introduces our notion of a uniform submani-

fold. This section ends with the “cutoff theorem”, which effectively bounds how much

of an entropy estimation error may be incurred by restricting our analysis to a conve-

nient tubular neighborhood of the input manifold.

Chapter 4 uses the entropy estimation theorems of Section 3.4 to obtain the asymp-

totic capacity results. A significant portion of this chapter is tedious technical bounds,

6



which we have quarantined in Subsections 4.2.1 and 4.2.2 to avoid cluttering the main

results.

Chapter 5 explores the application to the radar waveform channel, beginning with

an overview of radar and radar signal processing in Section 5.1. Our numerical method-

ology and results are presented in Section 5.3.
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2
Review of Differential Geometry

In this chapter we briefly cover the terminology and results from differential geome-

try pertinent to later chapters. Many of the results can be proven in greater general-

ity, but our treatment is specialized to smooth submanifolds of RN for simplicity and

concreteness, and mappings to and from the manifold are also assumed smooth. Re-

sults stated without an explicit reference are standard in many textbooks, for example

[3, 9]. A good modern text covering the classical differential geometry of curves and

surfaces is [2].

8



2.1 Constraint Functions, Manifolds, Manifolds with Boundary

Definition 2.1.1 (Charts and Manifolds).

(i) For 0 ≤ m ≤ n, set Hn
m := {x ∈ Rn : xk ≥ 0 for 1 ≤ k ≤ m}.

(ii) Let w ∈ W ⊂ RN , and suppose ϕ : U → V is a smooth mapping between open

sets U, V ∈ RN , mapping 0 ∈ U to w ∈ V . Furthermore, assume ϕ is invertible

with smooth inverse. Fix 0 ≤ n ≤ N .

(a) If ϕ(U ∩ Rn) = V ∩ W, so that an n-dimensional piece of U maps exactly

onto a corresponding piece of W within V , ϕ is called a local coordinate

system for W centered at w. This also can be referred to as a local param-

eterization of W at w, or a local coordinate chart.

(b) If there is a 0 ≤ m ≤ n such that ϕ(U ∩ Hn
m) = V ∩ W, we will call ϕ a

generalized local coordinate system/chart. If m ≥ 1 we also call it a local

boundary coordinate system and call w a boundary point.

(iii) If there is a local coordinate system centered at every w ∈ W ⊂ RN , all with

the same dimension n, then W is a smooth n-dimensional submanifold of RN .

(iv) If there is a generalized local coordinate system centered at every w ∈ W ⊂ RN ,

all with the same dimension n, then W is a smooth n-dimensional submanifold

of RN with generalized boundary. (The boundary charts need not all have the

same m.)

(v) If W ⊂ RN is an n-dimensional manifold, the number n′ = N − n is called the

codimension.

9



Example 2.1.1.

(i) The sphere S2 is an example of a submanifold of R3 which cannot be parame-

terized with a single coordinate chart. Note that the common “spherical coordi-

nate” parameterization fails to be invertible at the poles.

(ii) The closed ball B̄2 = {|x| ≤ 1} is an example of a manifold-with-boundary. So

is the closed hemisphere B̄2 ∩H3
1.

The following classical results let us prove that equality constraint functions gener-

ically give rise to manifolds, and a mixture of equality and inequality constraints give

rise to manifolds with boundary.

Definition 2.1.2. Let F be a smooth mapping on RN taking values in Rn′ . At each

x ∈ RN , denote the n′ ×N matrix of partial derivatives by DFx. If rank(DFx) < n′, x

is called a critical point of F, and b = F(x) ∈ Rn′ is called a critical value. If b ∈ Rn′ is

not a critical value, it is called a regular value.

In the next two theorems we assume N ≥ n′ and put n := N − n′.

Theorem 2.1.1 (Sard’s Theorem). If F : RN → Rn′ is Cn+1 then the set of critical

values of F has Lebesgue measure zero in Rn′.

This well-known result is proven in [10].

Theorem 2.1.2 (Regular Surfaces). Let b ∈ Rn′ be a regular value of F : RN → Rn′.

Then, W := {x ∈ RN : F(x) = b} is either the empty set or a smooth submanifold of

RN of dimension n := N − n′.

This result is standard. See, for example, [3, 9].
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We will now show that, if W ⊂ RN is defined by a set of smooth [in]equality con-

straints, it is a smooth submanifold (possibly with boundary) of RN in the generic

case:

Theorem 2.1.3. Let F : RN → RJ be a smooth map whose jth component is Fj, and

b := (b1, . . . , bJ) ∈ RJ . For each choice of b, define Wb := {w ∈ RN : F(X) ⋛ b}. Let

0 ≤ n′ ≤ J be the number of strict equality constraints imposed, and set n := N − n′.

For each b we have three possibilities:

(a) Wb = ∅, occurring when the imposed constraints are impossible to satisfy.

(b) Wb is a smooth submanifold of dimension n (possibly with boundary when in-

equality constraints are used), or

(c) Neither of the above.

The set of b for which (c) holds has Lebesgue measure zero in RJ .

Remark. In the special case of linear equality constraints, (a) corresponds to an inho-

mogeneous system of equations Ax = b with rank(A) < n′ and b /∈ Span{A}, hence

no solution. (b) corresponds to a system of equations when A has rank n′, and (c) cor-

responds to a system with rank(A) < n′ and b ∈ Span{A}, thus allowing solutions.

Note that when rank(A) < n′, Span{A} is a proper linear subspace of Rn′ , hence has

Lebesgue measure zero, as required.

Proof. In the case of only equality constraints, the theorem follows immediately from

the previous two theorems. To extend this to inequality constraints, break up Wb into

the disjoint sets under which the 2J−n
′ possible combinations of inequality constraints

11



are active. Each active constraint region corresponds to its own set of equality con-

straints, hence is itself a smooth submanifold for all but a measure-zero set of b. The

union of these exceptional sets is still measure-zero.

Remark. The moral of this theorem is that a generic set of realizable constraints will

almost surely define a manifold (possibly with boundary). However, there is the pos-

sibility of this failing for an exceptional choice for b. One intuitive way to understand

the significance of this minor technical caveat is the following: If a specified choice of

the constraint values b ∈ RJ happens to not give rise to a smooth submanifold, then

at least we are assured that there are uncountably many alternate choices b′ which do

give rise to a smooth submanifold. Furthermore, these choices are guaranteed to exist

arbitrarily closely to our original b ∈ RJ .

2.2 Tangent Vectors, Covariant Derivatives, Geodesics, Exponen-

tial Map

Definition 2.2.1 (Tangent/Normal Spaces).

(i) Each point w ∈ W has a tangent space to W at w, denoted TwW, which is an

n-dimensional real vector space centered at w.

(ii) If γ(t) : (−1, 1) → W is a curve on W with γ(0) = w, then γ′(0) ∈ TwW, and

TwW is the space of all such tangent vectors.

(iii) The orthogonal compliment to TwW, consisting of vectors based at w that are

perpendicular to TwW (under the standard inner product on RN ), is the nor-

mal space to W at w, denoted NwW or T⊥
wW.
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(iv) A smoothly varying inner product on the tangent spaces of W is called a Rie-

mannian metric, usually denoted g. The standard inner product of RN , re-

stricted to the tangent spaces, is the Riemannian metric induced by embedding

W in the ambient space RN .

(v) A tangent vector field is a mapping assigning (smoothly-varying) tangent vec-

tors to some subset of W. If γ : (−1, 1) → W is a curve, and V (t) is a smooth

mapping from t ∈ (−1, 1) to V (t) ∈ Tγ(t)W, we call V (t) a tangent vector field

on γ.

(vi) If a curve γ(t) satisfies |γ′(t)| = 1 for all t, it is arc-length parameterized.

Since W ⊂ RN , tangent vector fields V (t) along a curve on X can be expressed

in two ways: intrinsically, in terms of n coordinate directions parameterizing a chart

on a neighborhood of W, or extrinsically, in terms of the N basis directions of the

ambient space.

Definition 2.2.2 (Covariant Derivatives).

(i) Let V (t) be a tangent vector field along the curve γ(t). V can be extrinsically

represented as
(
V 1(t), . . . , V N (t)

)
∈ RN . Let D̄V (t) := dV

dt (t) ∈ RN , the

component-wise derivative. Even though V (t) ∈ Tγ(t)W, in general D̄V (t) ∈

Tγ(t)W ⊕ T⊥
γ(t)W ≈ RN , i.e. its perpendicular component need not be zero.

(ii) The covariant derivative of a vector field V along the curve γ is DV (t) :=(
D̄V (t)

)⊤, is the orthogonal projection of D̄V (t) onto Tγ(t)W, at every t along

its definition. (Specific notation can vary; Some authors will write V ′(t) instead

of DV (t).)

13



(iii) Instead of being defined only on a curve, suppose U, V are two vector fields de-

fined on an open set U ⊆ W. At each w ∈ U , the extrinsic directional derivative

of V can be taken in the direction specified by U(w). This is denoted by D̄UV

(or ∇̄UV ). The covariant derivative of V with respect to U is again the projec-

tion onto the tangent space at each point: DUV ≡ ∇UV :=
(
∇̄UV

)⊤.

(iv) Let γ(t) be a curve on W. Then V (t) := γ′(t) defines a tangent vector field

along γ. If DV (t) = 0 for all t, γ is called a geodesic curve on W. If w = γ(t)

for some t we say that γ is a geodesic at w with velocity γ′(t).

Remark.

(i) The covariant derivative is frequently defined differently, through tensor nota-

tion that we are trying to avoid delving into here. See, for example, [9, Ch. 4]

for a proof that our definition is equivalent.

(ii) From our definition, a geodesic is simply a curve on W whose extrinsic “acceler-

ation” D̄γ′(t) ≡ d2γ
dt2

(t) ∈ RN is always perpendicular to the tangent spaces of

W.

For every point w ∈ W and unit-length tangent direction u ∈ TwW there is a

unique arc-length parameterized geodesic going through w with velocity u. In fact, we

can say much more:

Theorem 2.2.1 (Exponential Map). For every w ∈ W there is an open neighbor-

hood U ⊂ W containing w and an open neighborhood Ũ ⊂ TwW ≈ Rn. These open

neighborhoods may be chosen such that a bijection expmw : Ũ → U between tangent vec-

tors and geodesics through w, can be defined in the following way: expmw(0) = w, and

for any unit-norm u ∈ TwW, for |t| small enough to guarantee that tu ∈ Ũ , we have
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expmw(tu) = γu(t), where γu is the unique arc-length parameterized geodesic through

w with velocity u at w. Furthermore, expmw and its inverse expm−1
w are smooth.

The map expmw is called the the exponential map due to its historical application

as the matrix exponential on manifolds of matrix groups. Note that expmw maps rays

emanating from the origin of TwW onto the geodesic curves through w whose veloc-

ity at w is determined by the direction of the tangent space ray. The key property of

geodesics is that they are length-minimizing:

Theorem 2.2.2 (Geodesics are locally minimal). If U is a normal neighborhood about

w ∈ W, and w2 ∈ U , then (up to reparameterizations), the geodesic ray connecting w

to w1 minimizes arc-length among all piecewise differentiable curves connecting those

points.

This is proven in [3].

Definition 2.2.3 (Geodesic Balls and Coordinates).

(i) The geodesic distance dW(w1, w2) between w1, w2 ∈ W is the infimum of the arc-

lengths of all geodesic curves starting at w1 and ending at w2 (or vice versa, by

reversing the curves). If no such connecting curves exist, set dW(w1, w2) = ∞.

(ii) Define the geodesic ball of radius ρ > 0 at w0 ∈ W as BW
ρ (w0) := {w ∈

W : dW(w0, w) < ρ}. Note that if ρ is small enough that Bn
ρ (0) ⊂ Ũ ⊂ TwW,

then BW
ρ (w) ≡ expmw(B

n
ρ (0)).

(iii) Let U be a normal neighborhood of w0 ∈ W. Choose an orthonormal basis

of tangent vectors {u1, . . . , un} for Tw0W, so we can concretely identify Tw0W
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with Rn and define a local parameterization using the maps

τ̌(t1, . . . , tn) :=

n∑
i=1

tiui ∈ Tw0W, w̌(t1, . . . , tn) := expmw0
(τ̌(t1, . . . , tn)) ∈ W

valid on the open set Ǔ = w̌−1(U) ⊂ Rn. This is the geodesic normal coordinate

system at w0 with respect to {ui} (normal coordinates for short).

(iv) The (t1, . . . , tn) themselves may be parameterized in polar coordinates ťi(r, ω)

for r > 0 and ω ∈ Sn−1. The composition
(
w̌ ◦ ť

)
(r, ω) will be called geodesic

polar coordinates at w0.

2.3 Volume

Definition 2.3.1. Let w̌(t1, . . . , tn) be a parameterization mapping Ũ ⊂ Rn onto

U ⊂ W. Define the components of a real n× n matrix-valued function G(t1, . . . , tn) on

Ũ by Gij :=
⟨
∂w̌
∂ti
, ∂w̌
∂tj

⟩
, and a Borel measure V n on U by

V n(S) :=

∫
Ũ
(1S ◦ w̌)

√
detGdt1 · · · dtn

We use the notation 1S for the indicator function of the set S, taking the value 1 for

points in S and zero otherwise.

Remark. The matrix G represents the Riemannian metric g in the coordinate basis

vectors. It is an exercise in linear algebra to show that
√
detG is the n-dimensional

volume of the parallelepiped spanned by the tangent vectors {∂w̌
∂ti

}ni=1. When n = 1,

V n is arc-length, and when n = N ,
√
detG is the Jacobian factor for the Lebesgue

measure on RN .
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Theorem 2.3.1. Each V n is independent of choice of parameterization w̌. There is

a unique Borel measure defined on all of W that agrees with the prior definitions on

each parameterized subset U .

Definition 2.3.2. From now on V n will refer to this unique measure defined on all of

W. We will call it the n-dimensional volume on W induced by RN . When working in

a geodesic normal coordinate system about w0, we will sometimes use the shorthand

Jw0 in place of
√
detG.

2.4 Second Fundamental Form, Shape Operator, Curvature

Previously we saw that if U, V are tangent vector fields defined on an open U ⊆ W,

we have the extrinsic directional derivative D̄UV and covariant derivative DUV =(
D̄UV

)⊤. The normal piece of D̄UV encodes important information, too:

Definition 2.4.1 (Second Fundamental Form and Shape Operator).

(i) Let w ∈ W and U, V be tangent vector fields defined in an open neighborhood

containing w. The second fundamental form at w is a map TwW × TwW →

T⊥
wW given by IIw(U, V ) :=

(
D̄UV

)⊥.

(ii) Closely related is the shape operator at w, a linear map Sw,N : TwW → TwW

defined for each w ∈ W and normal vector field N defined near w, as follows:

For each tangent vector field U defined near w, Sw,NU := −
(
D̄UN

)⊤.

“Form” here refers to the bilinear forms of linear algebra. In older terminology, the

metric g, giving the inner product on tangent spaces, was referred to as the first fun-

damental form of W. The second fundamental form is, indeed, a symmetric bilinear

form, and carries the same information as the shape operators:
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Theorem 2.4.1. IIw(U, V ) is symmetric in U, V : IIw(U, V ) = IIw(V,U). If f : W →

R, we define the vector field fU by scaling U(w) by the value f(w) at each w. II is

bilinear over functions, in the sense that

IIw(f1U1 + f2U2, V ) = f1(w) IIw(U1, V ) + f2(w) IIw(U2, V )

The values IIw(U, V ) and Sw,NU , formally defined in terms of vector fields, in fact de-

pend only on the point vectors obtained by evaluation at w: τ1 = U(w), τ2 = V (w), ν =

N(w). Hence, when appropriate we write IIw(τ1, τ2) and Sw,ντ , with τ, τ1, τ2 ∈ TwW

and ν ∈ T⊥
wW.

The shape operator is self-adjoint. It is equivalent to the 2nd fundamental form in

the following sense: When expressed in any orthonormal basis of TwW, the matrix of

the linear operator Sw,ν agrees with that of the bilinear form (τ1, τ2) 7→ ν · IIw(τ1, τ2).

We will need the following useful relationship between II and geodesic curves:

Lemma 2.4.2. For any geodesic curve γ(t) on W,

(i) γ′′(t) = IIγ(t)(γ′(t), γ′(t)) ∈ T⊥
γ(t)W.

(ii) If ν ∈ T⊥
γ(t)(W) then for some c between s and t,

ν · [γ(s)− γ(t)] =
1

2
(s− t)2ν · IIγ(c)(γ′(c), γ′(c))

Proof. (i) is evident from the definitions: γ′′(t) = D̄γ′(t)D̄γ′(t)γ(t) = D̄γ′(t)γ
′(t) =

(D̄γ′(t)γ
′(t))⊥ = IIγ(t)(γ′(t), γ′(t)). For (ii), consider a 1st order Taylor series of f(s) :=

ν · [γ(s) − γ(t)], centered at t. Since f(t) = f ′(t) = 0 and f ′′(s) = ν · γ′′(s), the result

follows by the mean-value form of the 2nd order remainder term.
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Example 2.4.1. Let r > 0 and W = S1
r (0) ⊂ R2. n = 1, N = 2. The tangent space

at angle θ is spanned by U(θ) := (cos θ, sin θ), and the normal space is spanned by

ν(θ) := (− sin θ, cos θ), the inward-pointing normal. Set w0 = (0, r). The curve γ(t) =

(r sin(t/r), r cos(t/r)), which is arc-length parameterized, satisfies γ(0) = w0, γ′(0) =

(1, 0) = rU(w0), and γ′′(0) = (0,−1/r) = (1/r)ν(w0). γ′′(0) is already orthogonal

to T(0,r)S1
r ⇔ Dγ′γ

′ = 0 ⇔ γ is a geodesic curve. We have II(0,r)(γ′(0), γ′(0)) =

(1/r)ν(w0). Indeed, by symmetry, we can conclude that II(U,U) = (1/r)ν for all w ∈

S1
r (0).

Example 2.4.2. When n = 2 and N = 3, W is a surface in R3. The normal space

is 1-dimensional, so if a unit normal vector ν ∈ T⊥
w0
W is chosen, we can consider

the symmetric bilinear form (u, v) 7→ ⟨IIw0(u, v), ν⟩ on Tw0W, or equivalently, the

shape operator Sw,ν . From linear algebra it is well-known that the self-adjoint Sw,ν

has real eigenvectors u1, u2 forming an orthonormal basis of TwW with eigenvalues

λ1, λ2. Thus Sw,νui = λiui ⇔ IIw0(ui, uj) = λiδij . Geometrically this may be inter-

preted as follows: in a small normal neighborhood about w0, define geodesics γ1, γ2

through w0 with velocities u1, u2, respectively. γi may be approximated to 2nd order

at w0 by a circle in the (ui, ν) plane, that passes through w0 tangentially to γi, with

radius |1/λi| and centered at w0 + ν/λi. (In the limiting case of λi = 0 the circle “of

infinite radius” is simply a straight line.)

Remark. The n = 2, N = 3 surface case is classical and was treated by Euler.

The approximating circle to a curve is called the osculating circle at the point, and

the eigenvalues of the 2nd fundamental form are called the principal curvatures at

the point, although it must be noted that these are not curvatures in the sense it is

typically meant in modern differential geometry, which we will define in a moment.
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On the other hand, the product of the principal curvatures, (or equivalently, the

determinant of the shape operator), is called the Gaussian curvature of a surface.

K = λ1λ2 = detSw,ν is a curvature in the modern sense (specifically, the unique

sectional curvature of the surface at each point; See the definition below.) Geometri-

cally K(w) describes how the surface is bending near point w; If K(w) > 0 it looks

like an ellipsoid, if K(w) < 0 it looks like a saddle point.

The Gaussian curvature was shown by Gauss to depend only on the intrinsic geom-

etry of the surface (that is, the metric on tangent spaces), which is not at all obvious,

given that II is defined in terms of normal spaces. Geometrically, this means that the

Gaussian curvature of a surface is not changed if a surface is transformed in a way

that preserves the distances and angles measured on the surface itself. For example,

a flat plane, which has K ≡ 0 everywhere, may be rolled into a cylinder without dis-

torting the distances or angles on the surface, so a cylinder also has K ≡ 0 (which

can also be proven directly.) In contrast is the following canonical “real-world” ob-

servation: the sphere S2
r has both principal curvatures equal to 1/r (relative to an

inward-pointing normal; both −1/r rel. an outward normal). Therefore S2
r has con-

stant positive Gaussian curvature 1/r2. This proves that it is impossible to make a

flat map of the Earth (or even any extensive solid angle of the Earth’s surface) with-

out introducing distortions in some of the lengths, areas, and angles being represented.

Hence, the existence of dozens of map projection methods, most of which portray the

planet’s land mass as highly concentrated in Antarctica and Greenland.

Definition 2.4.2. Let W be any smooth n-dimensional submanifold of RN , w ∈ W,

and let σw ⊂ TwW be a 2-dimensional subspace of the tangent space at w. Choose an
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orthonormal basis u1, u2 for σw. The sectional curvature of σw is

K(σw) := ⟨IIw(u1, u1), IIw(u2, u2)⟩ − ⟨IIw(u1, u2), IIw(u1, u2)⟩

where ⟨·, ·⟩ is the inner product on T⊥
wW induced by the dot product on RN .

Below, it will be helpful to also define the following: IIσw is IIw restricted to σw,

and Sσw,ν : σw → σw is Sw,ν restricted to σw and having its output restricted to σw by

orthogonal projection.

Remark. K(σw) is independent of the choice of orthonormal basis {u1, u2}, and de-

pends only upon intrinsic geometric quantities computed from the Riemannian metric

g, despite being defined in terms of the (non-intrinsic) 2nd fundamental form.

When n = 2 and N = 3, viewing IIw as a real-valued bilinear form as above, our

definition of sectional curvature reduces to a 2 × 2 matrix determinant, giving the

product of the eigenvalues, showing that sectional curvature of a surface is its Gaus-

sian curvature. The relationship between II and K in the general case is given by the

next lemma, which we will use later to bound sectional curvature in terms of bounds

on the 2nd fundamental form.

Lemma 2.4.3. For any 2-dimensional σw ⊂ TwW, let ν∗ ∈ T⊥
wW be chosen to

maximize |detSσw,ν |. Then K(σw) = detSσw,ν∗, hence |Kw| ≤ sup{|u|=1}|IIw(u, u)|2.

Proof. Assume N − n ≥ 2 (otherwise the result is trivial). Fix an o.n. basis {u, v} for
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σw. For any o.n. basis {ν1, . . . , νN−n} of T⊥
wW, we have

K(σw) =
N−n∑
1

(
νk · IIw(u, u)

)(
νk · IIw(v, v)

)
−
(
νk · IIw(u, v)

)(
νk · IIw(u, v)

)
=

N−n∑
1

det
(
νk · IIσw

)
=

N−n∑
1

detSσw,νk

It is enough to demonstrate a choice of νk with detSσw,νk = 0 for k = 2, . . . , N − n.

If νk ⊥ Span{IIw(u, u), IIw(u, v)} then it has no contribution to K, so we need only

consider o.n. pairs ν1, ν2, chosen to span this subspace, and we need only show some

ν = c1ν
1 + c2ν

2 with α2 + β2 = 1 and detSσw,ν = 0. Let Sk := Sσw,νk for k = 1, 2. If

detS2 = 0 we’re done. Otherwise,

detSσw,ν = det(c1S1 + c2S2) = c21(detS2) det

(
S1S

−1
2 +

c2
c1
I2

)

The ratio c2/c1 may achieve any value in R while satisfying c21 + c22 = 1. Taking

c2/c1 = −λ, where λ is an eigenvalue of S1S−1
2 , gives detSσw,ν = 0, completing the

proof.

We also define two additional important measures of curvature which can be consid-

ered as ways to average the K(σw) over various planes σw.

Definition 2.4.3. Let {u1, . . . , un} be any orthonormal basis for TwW. The Ricci

curvature at w is a symmetric bilinear form on pairs τ1, τ2 ∈ TwW given by

Ricw(τ1, τ2) :=

n∑
i=1

⟨IIw(τ1, τ2), IIw(ui, ui)⟩ − ⟨IIw(τ1, ui), IIw(τ2, ui)⟩
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and the scalar curvature at w is the real number

Rw :=

n∑
i=1

n∑
j=1

⟨IIw(ui, ui), IIw(uj , uj)⟩ − ⟨IIw(ui, uj), IIw(ui, uj)⟩

Remark. The Ricci and scalar curvatures are independent of the choice of {u1, . . . , un}

and are completely determined by knowledge of the K(σw), thus depend only on the

intrinsic Riemannian metric g. Some authors take these as averages instead of sums,

differing from our definitions by constant factors.

Curvature information can be used to describe the local relationship between vol-

ume and length. The following result is proven in [5, Ch. 3].

Theorem 2.4.4. (Infinitesimal Bishop-Günther Inequalities) For r > 0, λ ∈ R, define

ψ(r) :=



1, λ = 0(
λ

1
2 r
)−1

sin
(
λ

1
2 r
)
, λ > 0(

|λ|
1
2 r
)−1

sinh
(
|λ|

1
2 r
)
, λ < 0

Let W be an n-dimensional smooth manifold, n ≥ 1. Let (r, ω̂) be a polar geodesic

normal coordinate system about w0 ∈ W, defined in U = BW
ρ⊤

(w0). We have Jw0(0) =

1, and for 0 < r < ρ⊤:

(a) If K(σw) ≥ λ for all σw, w ∈ U , then Jw0(rω̂) ≤ [ψ(r)]n−1.

(b) If K(σw) ≤ λ for all σw, w ∈ U , then Jw0(rω̂) ≥ [ψ(r)]n−1.

Remark. When λ > 0 and r > πλ−1/2, Theorem 2.4.4 appears to give a negative

upper bound for Jw0 , which is impossible. The conclusion is that when λ > 0, ρ⊤ ≤
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πλ−1/2. This upper bound is achieved by the sphere of radius ρ, which has λ = ρ−2

and ρ⊤ = πρ.

Corollary 2.4.5. If n ≥ 1 and |ν · IIw(τ, τ)| ≤ cII |ν||τ |2 for every τ ∈ TwW and

ν ∈ T⊥
wW, then

|J(rω̂)− 1| ≤
[
sinh(cIIr)

cIIr

]n−1

− 1

∣∣J(rω̂)−1 − 1
∣∣ ≤ 1−

[
cIIr

sinh(cIIr)

]n−1

Proof. Set x := cIIr > 0. By Lemma 2.4.3 and Theorem 2.4.4,

|J(rω̂)− 1| ≤

[(
sinhx

x

)n−1

− 1

]
∨

[
1−

(
sinx

x

)n−1
]

From their power series expansions, x > 0 =⇒ 1 < 1
2

(
sinhx
x + sinx

x

)
. By convexity

of x 7→ xn−1, then, 1 <
[
1
2

(
sinhx
x + sinx

x

)]n−1 ≤ 1
2

[(
sinhx
x

)n−1
+
(
sinx
x

)n−1
]

which is

equivalent to
(
sinhx
x

)n−1 − 1 > 1 −
(
sinx
x

)n−1, yielding the first stated inequality. The

second inequality follows similarly, by the concavity of x 7→ x1−n, with the inequality

chain reversed.

2.5 Tubular Neighborhoods

Definition 2.5.1 (Tubular Neighborhoods).

(i) Let W be an n-dimensional differentiable submanifold of RN , ρ > 0, and S any

subset of W. Set the notation B⊥
ρ (S) := {w + νw : w ∈ S, νw ∈ T⊥

wW, |νw| < ρ}.

We will also use B⊥
ρ (w) := B⊥

ρ ({w}) below.
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(ii) If U is an open subset of W and every y ∈ B⊥
ρ (U) can be uniquely expressed in

the form y = w + νw with w ∈ U , νw ∈ T⊥
wW, |νw| < ρ, then B⊥

ρ (U) is called a

tubular neighborhood of radius ρ about U .

Theorem 2.5.1. For any w ∈ W there is an open neighborhood U ⊂ W containing w

and a ρ > 0 such that B⊥
ρ (U) is a tubular neighborhood.

This intuitively plausible result is proven in [9, pg. 200] in a more general setting.

Definition 2.5.2. Let B⊥
ρ (U) be a tubular neighborhood. At each w ∈ U the set

B⊥
ρ (w) ⊂ T⊥

wW has the “obvious” (N − n)-dimensional Lebesgue measure dmN−n

induced by isometrically identifying it with BN−n
ρ ⊂ RN−n. Define a Borel measure

on B⊥
ρ (U) by the iterated integral

(V n ×mN−n)(S) :=

∫
W

∫
B⊥

ρ (w)
1S(w + νw) dm

N−n(νw) dV
n(w)

Theorem 2.5.2. Let B⊥
ρ (U) be a tubular neighborhood and dmN the standard N -

dimensional Lebesgue measure on it. Then

Θ(w, ν) :=
dmN

dV ndmN−n = det(In − Sw,ν)

where In and Sw,ν are the identity operator and the shape operator on TwW, respec-

tively.

This is proven in abstract modern notation in [5, ch. 3], and in classical notation,

by Weyl, in [13].
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Definition 2.5.3. Define the even and odd parts of Θ with respect to ν:

Θe(w, ν) :=
1

2
(Θ(w, ν) + Θ(w,−ν))

Θo(w, ν) :=
1

2
(Θ(w, ν)−Θ(w,−ν))

We will use these in subsequent sections, along with the following estimates:

Corollary 2.5.3. If |ν · IIw(τ, τ)| ≤ cII |ν||τ |2 for every τ ∈ TwW, ν ∈ T⊥
wW, then

(1− cII |ν|)n ≤ Θ(w, ν) ≤ (1 + cII |ν|)n

|Θe(w, ν)− 1| ≤
⌊n/2⌋∑
k=1

(
n

2k

)
(cII |ν|)2k

|Θo(w, ν)− 1| ≤
⌈n/2⌉∑
k=1

(
n

2k − 1

)
(cII |ν|)2k−1

Proof. Combining Theorems 2.4.1 and 2.5.2, we immediately have the first equation.

For the other two, note that only even products of eigenvalues show up in the expan-

sion of Θe via Theorem 2.5.2, and only odd products in Θo, then apply Theorem 2.4.1

to the sum.
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3
Entropy

This chapter defines and examines entropy with respect to a measure, with a focus on

quantitative bounds on entropy differences for deducing convergence. Our ultimate

focus will be entropy with respect to the induced volume measures of submanifolds of

RN .

3.1 The Generalized Entropy Functional

Consider a random variable X ∈ RN with probability density pX(x). The standard

differential entropy is defined as h(pX) = −
∫
RN pX(x) log pX(x) dx. With this defini-

tion, a differentiable and invertible change of variables x 7→ x′ induces the “correction
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factor”

h(X ′) =

∫
pX′(x′) log

1

pX′(x′)
dx′ = h(X) + E

(
log

∣∣∣∣∂x′∂x

∣∣∣∣)
It will be important in the work below to be able to work with differential entropy

in a coordinate-independent manner, as manifolds generally cannot be parameterized

entirely by any single coordinate system.

We adopt the following notation related to measure spaces and measures: P(M)

is the set of positive measures on a measurable space (M,Σ), which we always take

to be Borel (in fact, in applications M will always be a Borel subset of RN ). The set

of probability measures on M will be denoted by P̂(M). If µ is a positive σ-finite

measure on (M,Σ) then we will additionally take P(µ) := {f ∈ L1(µ) : f ≥ 0}

and P̂(µ) := {f ∈ L1(µ) : ∥f∥1 = 1}. Finally, we affirm the following minor abuse

of notation: if P is a measure, then P ∈ P̂(µ) will indicate that P is a probability

measure which is absolutely continuous with respect to µ (or equivalently, dP
dµ ∈ P̂(µ).

Definition 3.1.1 (Generalized Entropy). Let (W,Σ) be a measurable space with

positive σ-finite measure µ, and let f ∈ P(µ). The following quantities always exist as

values in [0,∞]:

h+µ (f) := −
∫
0<f<1

f log f dµ

h−µ (f) :=

∫
f>1

f log f dµ

(i) If either h+µ (f) or h−µ (f) is finite, the entropy of f with respect to µ exists as a

value in [−∞,∞] and is defined by

hµ(f) := h+µ (f)− h−µ (f) = −
∫
{f>0}

f log f dµ
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If h+µ (f) = h−µ (f) = ∞, hµ(f) does not exist (is undefined).

(ii) For P ∈ P̂(µ), h±µ (P ) := h±µ (
dP
dµ ). The entropy of P with respect to µ is hµ(P ) :=

hµ(
dP
dµ ) ∈ [−∞,∞] whenever hµ(dPdµ ) exists.

Remark. When hµ(P ) exists,

hµ(P ) = −E log
dP

dµ
= −

∫
W

log
dP

dµ
dP = −

∫
dP
dµ
>0

dP

dµ
log

dP

dµ
dµ

hµ(P ) generalizes the two classical entropies of information theory: If W = RN , Σ is

Borel sets, and dµ = dm = dx1dx2 · · · dxN , the standard N -dimensional Lebesgue

measure, then hm(P ) = h(P ), the standard differential entropy on RN . If W = Z+

and µ is the counting measure, then dP
dµ (i) = P (i) = pi, and hµ(P ) = −

∑
pi log pi is

the standard discrete entropy on countable spaces.

Many classical properties of h(P ) proven by convexity can be extended to arbitrary

µ. One example is the following, which will be of use later:

Lemma 3.1.1. Let µ be a positive measure on W with µ(W) < ∞. Then hµ(P )

exists for every P ∈ P̂(µ), supP hµ(P ) = log µ(W), and the sup is achieved by the

constant density p = µ(W)−1dµ.

Proof.
∫
µ(W)−1 logµ(W) dµ = logµ(W), so the constant density achieves the stated

entropy. Now let P ∈ P̂(µ), set p = dP
dµ , and µ̂ := µ(W)−1µ, and note that

∫
(µ(W)p) dµ̂ =∫

p dµ = 1. Applying Jensen’s inequality with the convex function x 7→ x log x on
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x > 0, we have

0 = 1 log 1 =

[∫
(µ(W)p) dµ̂

]
log

[∫
(µ(W)p) dµ̂

]
≤
∫
p>0

(µ(W)p) log(µ(W)p) dµ̂ =

∫
p>0

p log(µ(W)p) dµ

Thus logµ(W) ≥ logµ(W) −
∫
p>0 p log(µ(W)p) dµ = −

∫
p>0 p log p dµ = hµ(p), which

shows existence and the stated bound.

3.2 General Entropy Estimates

The following results will be needed to prove uniform convergence of approximate en-

tropies. Note that here and elsewhere we will make use of the binary maximum and

minimum operators: a ∨ b := max{a, b}, a ∧ b := min{a, b}.

Lemma 3.2.1. For a, b ≥ 0 and p > 0 we have (a + b)p ≤ (2p−1 ∨ 1)(ap + bp) and

ap + bp ≤ (21−p ∨ 1)(a+ b)p.

Proof. This result is standard and is easily proven with calculus; Extremize ψ(x) =

(x+ b)p(xp + bp)−1 for x ∈ [0,∞).

Lemma 3.2.2. The function defined for t ≥ 0 by ψ(0) = 0, ψ(t) = t log 1
t when t > 0

is uniformly Hölder continuous on [0, A] for any exponent α ∈ (0, 1) and A > 0. In

particular, if 0 ≤ s < t ≤ A then

|ψ(t)− ψ(s)|
|t− s|α

≤ 1

1− α
∨A1−αlog+(eA)

Proof. Note that ψ is continuous for t ≥ 0, smooth for t > 0, increasing for 0 ≤

t < e−1, decreasing for t > e−1, and concave down. We now consider several cases. If
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s = 0 < t ≤ A ≤ e−1 then we have

|ψ(t)− ψ(s)|
|t− s|α

= t1−α log
1

t

≤ c0α,e−1 := sup
0≤t≤e−1

t1−α|log t|

t1−α log t is non-negative and continuous on [0, e−1] and achieves its only stationary

point at t = e−
1

1−α , so c0α,e−1 = 1
e(1−α) .

If 0 < s < t ≤ A ≤ e−1, since ψ is increasing we need only bound from above

[ψ(t)− ψ(s)](t− s)−α, and since ψ is concave-down,

ψ(t) ≤ ψ(s) + ψ′(s)(t− s)

≤ ψ(s) +

(
log

1

es

)
(t− s)

≤ ψ(s) + (t− s)1−α
(
log

1

es

)
(t− s)α

If we also have s ≥ e−1(t−s) then, using t−s ∈ (0, A], we have [ψ(t)− ψ(s)](t−s)−α ≤[
(t− s)1−α log 1

t−s

]
≤ c0α,e−1 . If we have instead s < e−1(t − s), then t = s + (t − s) <

(1+e−1)(t−s), so ψ(t)−ψ(s) ≤ ψ(t) ≤ ψ
(
(1 + e−1)(t− s)

)
≤ c0α,e−1

(
1 + e−1

)α
(t−s)α ≤

(1 + e−1)c0α,e−1(t− s)α.

In the case e−1 ≤ s < t ≤ A we have, by the Mean Value Theorem, |ψ(t)− ψ(s)| ≤

(log eA)(t− s) ≤
[
A1−α log(eA)

]
(t− s)α.

Finally, if 0 < s < e−1 < t ≤ A then

|ψ(t)− ψ(s)| ≤
∣∣ψ(t)− ψ(e−1)

∣∣ ∨ ∣∣ψ(s)− ψ(e−1)
∣∣

Since (t − e−1)α, (e−1 − s)α ≤ (t − s)α we can always apply one of the previous cases
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to achieve a bound.

Theorem 3.2.3. Let α ∈ (0, 1), b ∈ (1,∞], and f, g ∈ P(µ) for measure µ. Put S :=

{f ∨ g > 1}. Suppose hµ(g) exists, and ∥g∥1;S, |hµ(g)|,
∫
|f − g|α dµ, and ∥f − g∥b;S

are all finite. Then hµ(f) exists, is finite, and

|hµ(f)− hµ(g)| ≤
1

1− α

∫
|f − g|α dµ+

eα(1−b
−1)∥f + g∥1−αb

−1

1;S

α(1− b−1)
∥f − g∥αb;S

Proof. Note that ∥f + g∥1;S ≤ 2∥g∥1;S + ∥f − g∥1;S ≤ 2∥g∥1;S + ∥f − g∥b;S , so

∥f + g∥1;S < ∞. Put f, g in place of s, t in the previous lemma. On Sc, the bound

is simply |ψ(f)− ψ(g)| ≤ (1 − α)−1 ∨ 1 ≤ (1 − α)−1. On S, A may be set to f + g

and the the maximum bound replaced by a sum, giving |ψ(f)− ψ(g)| ≤ (1 − α)−1 +

(f + g)1−αlog+[e(f + g)]. Define γ = α(1 − b−1) ∈ (0, α]. On S, [e(f + g)]γ > 1, so

log+[e(f +g)] = γ−1log+[e(f +g)]γ ≤ eγγ−1(f +g)γ . Integrate these bounds and apply

Hölder’s inequality with the exponents (1− α+ γ)−1 and (α− γ)−1 = α−1b:

|hµ(f)− hµ(g)| ≤
∫
Sc

1

1− α
|f − g|α dµ +

+

∫
S

(
1

1− α
+ (f + g)1−αlog+[e(f + g)]

)
|f − g|α dµ

≤ 1

1− α

∫
|f − g|α dµ+ γ−1eγ

∫
S
(f + g)1−α+γ |f − g|α dµ

≤ 1

1− α

∫
|f − g|α dµ+ γ−1eγ∥f + g∥1−αb

−1

1;S ∥f − g∥αb;S

Theorem 3.2.4. Let α ∈ (0, 1), b ∈ (1,∞], and f, g ∈ P(µ) for measure µ. Define

c± :=
∣∣∫ f ± g dµ

∣∣, and suppose hµ(g) exists and is finite,
∫
|f − g|α dµ ≤ cα < ∞, and
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∥f − g∥b ≤ cb <∞. Then hµ(f) exists, is finite, and

|hµ(f)− hµ(g)| ≤
c 1−α
+ e

α(1−α)(1−b−1)

1−αb−1 (1− αb−1)

α(1− α)(1− b−1)

(
cα

1−b−1
cb

1−α
) α

1−αb−1

+ c−

∣∣∣∣log(c+) + 1

1− αb−1

(
α(1− b−1) + α log cb − log cα

)∣∣∣∣
In the important case when ∥f∥1 = ∥g∥1 = 1 (when f, g are probability distributions),

we have

|hµ(f)− hµ(g)| ≤
21−αe

α(1−α)(1−b−1)

1−αb−1 (1− αb−1)

α(1− α)(1− b−1)

(
cα

1−b−1
cb

1−α
) α

1−αb−1

Proof. By the log-convexity of the Lp norms, ∥u∥1 ≤
(∫

|u|α dµ
) 1−b−1

1−αb−1 ∥u∥
1−α

1−αb−1

b , so

cα, cb <∞ =⇒ c± <∞. For every constant scale factor r > 0, we can compute

hµ(f)− hµ(g) = hrµ(r
−1f)− hrµ(r

−1g) + (log r)

∫
f − g dµ

Theorem 3.2.3 gives, for all r > 0, b <∞,

∣∣∣∣hrµ(fr
)
− hrµ

(g
r

)∣∣∣∣ ≤ 1

1− α

∫ ∣∣∣∣f − g

r

∣∣∣∣α r dµ+
c 1−αb−1

+ eα(1−b
−1)

α(1− b−1)

(∫ ∣∣∣∣f − g

r

∣∣∣∣b r dµ
)αb−1

≤ r1−α

1− α

∫
|f − g|α dµ+

c 1−αb−1

+ eα(1−b
−1) r−α(1−b

−1)

α(1− b−1)
∥f − g∥αb

where we have simplified by replacing S with the entire measure space. It is easily

checked that the same inequality holds for b = ∞. Thus, we have,

|hµ(f)− hµ(g)| ≤
cα

1− α
r1−α +

c 1−αb−1

+ eα(1−b
−1)cαb

α(1− b−1)
r−α(1−b

−1) + c1|log r|
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for all r > 0. Taking r =
(
c 1−αb−1

+ eα(1−b
−1)cαb c

−1
α

) 1
1−αb−1 gives the stated bound. If

∥f∥1 = ∥g∥1 then c+ = 2 and c− = 0, giving the second assertion.

Thus the rate of convergence of the differential entropies of a sequence may be es-

timated in terms of the Lα quasi-norm and Lb norm of the differences. In general,

neither of these two quantities alone is sufficient to deduce convergence.

We can use these quantities to deduce existence and finiteness properties of hµ:

Corollary 3.2.5. Let f ∈ P(µ), p ∈ P̂(µ). Each of the following imply that hµ(f)

exists, and satisfies the stated upper or lower bound, whenever the quantities in the

bound are finite:

(i) For any α ∈ (0, 1): hµ(f) ≤ 1
1−α

∫
f<1 f

α dµ.

(ii) hµ(f) ≤ µ({0 < f < 1}).

(iii) For b ∈ (1,∞): hµ(f) > −2
[
1 + e(1− b−1)−1

]
∥f∥bb;{f>1}.

(iv) For b ∈ (1,∞]: hµ(p) > −
[
1 + e2(1− b−1)−1

]
log
(
∥p∥b;{p>1} ∨ e2

)
.

Proof. Set f+ := 1{f<1}f , so hµ(f+) = h+µ (f) ≥ 0. Applying Theorem 3.2.3 with

f+ in place of f and g = 0 gives h+µ (f) ≤ (1 − α)−1
∫
0<f<1 f

α dµ. This gives (i)

immediately, and (ii) follows from (i) since
∫
{0<f<1} f

α dµ ≤ µ({0 < f < 1}) for all

α ∈ (0, 1).

Now set f− := 1{f>1}f , so hµ(f−) = −h−µ (f) ≤ 0. For any α ∈ (0, 1) we have∫
{f>1} f

α dµ < ∥f∥1;{f>1}. We can apply Theorem 3.2.3 for any α ∈ (0, 1), f− in place

of f , and g = 0 to obtain that, whenever the quantities on the RHS are finite,

h−µ (f) ≤
1

1− α
∥f∥1;{f>1} +

e

α(1− b−1)
∥f∥1−αb

−1

1;{f>1}∥f∥
α
b;{f>1}
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(iii) follows by taking α = 1
2 and noting that ∥f∥1;{f>1} ≤ ∥f∥bb;{f>1}. For (iv), take

α =
[
log
(
∥f∥b;{f>1} ∨ e2

)]−1
, so α ≤ 1

2 =⇒ (1 − α)−1 ≤ α−1. After some algebra,

the stated bound follows.

3.3 Renormalization Entropy Estimate

This simple lemma lets us estimate certain entropy errors due to an overall scaling

factor u which will be close to unity.

Lemma 3.3.1. Suppose p ∈ P̂(µ), hµ(p) is finite, and u ∈ L∞(µ) with u ≥ 0.

(i) In the special case when u ≡ u0 is constant µ-a.e.: hµ(up) exists, and

|hµ(up)− hµ(p)| ≤ |u0 − 1|[(1 + u0) + |hµ(p)|]

(ii) If instead p ∈ L∞(µ), then hµ(up) exists, and

|hµ(up)− hµ(p)| ≤ ∥u− 1∥∞(1 + ∥u∥∞ + 2∥p∥∞ + hµ(p))

Proof. We have

|hµ(up)− hµ(p)| =
∣∣∣∣∫ up log(up)− p log p dµ

∣∣∣∣
≤
∣∣∣∣∫ (u log u)p dµ

∣∣∣∣+ ∣∣∣∣∫ (u− 1)p log p dµ

∣∣∣∣
The first term is bounded by ∥u log u∥∞. Since x log x ≤ x(x − 1) when x > 1 and

x− 1 ≤ x log x when 0 < x < 1, we always have ∥u log u∥∞ ≤ ∥u− 1∥∞(1 + ∥u∥∞).

If u is constant then
∣∣∫ (u− 1)p log p dµ

∣∣ = |u0 − 1||hµ(p)|, and (i) is proven.
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Otherwise, for (ii),
∣∣∫ (u− 1)p log p dµ

∣∣ ≤ ∥u− 1∥∞
∫
p|log p| dµ. Let S = {p > 1},

so
∫
p|log p| dµ = hµ(p)+2

∫
S p log p dµ. To complete the proof, note that

∫
S p log p dµ ≤∫

S p(p− 1) dµ ≤ ∥(p− 1)+∥∞ ≤ ∥p∥∞.

3.4 Entropy Estimates on Uniform Submanifolds of RN

Let W be a differentiable submanifold of RN of dimension n, with N > 0 and 0 ≤ n ≤

N . We will sometimes refer to the codimension as n′ := N − n. We specifically wish

to allow the possibility that the closure W is a manifold-with-boundary.

The standard Euclidean metric on RN induces a metric on W, which in turn in-

duces a volume measure supported on W which we denote V n (the “n-dimensional

volume” of sets in W). When PX is a probability measure on W satisfying V n(E) =

0 =⇒ PX(E) = 0, the probability density pX exists as the Radon-Nikodym derivative
dPX
dV n . The entropy of such PX will be computed relative to V n:

hV n(pW ) =

∫
W
pW (w) log

1

pW (w)
dV n

In this and the following chapter we will utilize several convenient uniformity as-

sumptions. We require the existence of a tubular neighborhood U ⊂ RN about W

which is of uniform radius ρ⊥(W) > 0. We will require that the 2nd fundamental
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form of W ⊂ RN is uniformly bounded.* That is, we assume

cII(W) := sup
w∈W, τ∈TwW, |τ |=1

|IIw(τ, τ)| <∞

These two requirements suffice for the results of this chapter, but we add the fol-

lowing additional requirement that will be needed in the next chapter: If W has no

boundary, we require a ρ⊤(W) > 0 such that a geodesic normal coordinate system

of geodesic radius ρ⊤(W) can be constructed at all w ∈ W. If ∂W ̸= ∅ we instead

require that there exists an n-dimensional submanifold W ′ ⊃ W, and a ρ⊤(W) > 0

such that a geodesic normal coordinate system for W ′, of geodesic radius ρ⊤(W), can

be constructed at all w ∈ W.

For notational and computational convenience, we collect the above into two bound-

ing constants:

Definition 3.4.1. If W ⊂ RN is a differentiable submanifold and ρ⊥(W), ρ⊤(W), and

cII(W) are as described above, define

coW := max
{
cII(W), ρ⊥(W)−1

}
cW := max

{
cII(W), ρ⊥(W)−1, ρ⊤(W)−1

}
If coW < ∞ we will say that W is semi-uniform. If cW < ∞ we will say that W is

uniform.
*This requirement is a way to control the degree to which the geometry of W deviates

from the standard Euclidean geometry. Here is an equivalent requirement: At a point w ∈ W
we can choose a direction w tangent to W and a direction ν normal to W, which together
span a plane P . In a small region of P near w, W ∩ P can be “best approximated” by an arc
of a circle of some radius which is tangent to W ∩ P at w (where radius of ∞ is permitted in
the case of a straight line). Our requirement is that the radius of such a circle is always ≥ c−1

II
for every w, τ , and ν.
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Remark.

(i) If W is compact, cW <∞.

(ii) cW scales like length−1, so if a > 0 and aW = {aw : w ∈ W}, caW = a−1cW .

(iii) cW = 0 =⇒ W is an affine linear subspace of RN , that is, a copy of Rn up to

some fixed rotation and translation.

(iv) Any open subset of RN is semi-uniform, but need not be uniform. We will need

this distinction later.

For brevity, we use κN,n := NNΓ(1+n/2)Γ(1+n′/2)

nn(n′)n′Γ(1+N/2)
in the following results, following

the convention 00 := 1 when needed. It can be verified, with the Sterling approxima-

tion bounds, that κN,n ≤ 2N1/2eN/2 for all n,N ≥ 0.

The following lemma allows us to bound dV n-integration on W using standard

Lebesgue integration on RN (expressed here in spherical coordinates). If the assump-

tion of ρ⊥ > 0 is omitted, the lemma no longer holds, with counterexamples provided

by “space-filling” curves.

Lemma 3.4.1. Let W be semi-uniform and define V n
W(r) := V n(W ∩BN

r ). We have

V n
W(r) ≤ κN,n ωnr

n(1 + coWr)
n′

Suppose ψ ∈ L1[r0,∞) is differentiable with ψ′ ∈ L1[r0,∞), ψ ≥ 0, and limr→∞ ψ(r)rN =

0. Then we have

∫
W∩{|w|>r0}

ψ(|w|) dV n ≤ κN,n ωn

∫
{r>r0 : ψ′(r)<0}

∣∣ψ′(r)
∣∣rn(1 + coWr)

n′
dr
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Proof. Let ρ > 0. We have V N (Bρ(W ∩BN
r )) ≤ ωN (r + ρ)N by the triangle inequality.

On the other hand, when ρ < ρ⊥(W), this is bounded below by integrating in tubular

coordinates and applying Corollary 2.5.3:

V N (Bρ(W ∩BN
r )) =

∫
W∩BN

r

∫
Bn′

ρ (w)
Θ(w, ν) dνn

′
dV n

≥ V n(W ∩BN
r )ωn′ρn

′
(1− cII(W)ρ)n

Chaining the inequalities and using cII(W) ≤ coW gives

V n
W(r) ≤ ωN (r + ρ)N

ωn′ρn′(1− coWρ)
n

whenever coWρ < 1. Setting ρ = (n′r)(n+NrcoW)−1 (the minimizing choice) yields the

first claim, after some algebra.

V n
W(r) is an increasing lower-semicontinuous function of r ≥ 0 (possibly containing

a countable set of jump discontinuities, which occur at values of r for which SN−1(r)

contains a non-empty n-dimensional submanifold of W). Thus it has a generalized

(distributional) derivative with respect to r which obeys the generalized integration-

by-parts formula:

∫
W∩{r0<|w|≤r1}

ψ(|w|) dV n =

∫
(r0,r1]

ψ(|r|)
dV n

W(r)

dr
dr

= [ψ(r)V n
W(r)]r1r0 −

∫
(r0,r1]

ψ′(r)V n
W(r) dr

Applying the previous bounds and taking the limit as r1 → ∞ yields the assertion.

The following weighted norms provide a way to quantify how quickly a function
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goes to zero in the large-radius limit.

Definition 3.4.2. Let W be semi-uniform and δ ≥ 0. For V n-measurable f : W → R,

the decay norm of exponent δ is

∥f∥(δ) :=
∫
W
|f(w)|(1 + coW |w|)δ dV n

If PW is a probability measure on W,

∥P∥(δ) := E(1 + coW |W |)δ

More generally, for any aW ≥ coW we define

∥f∥(δ);aW :=

∫
W
|f(w)|(1 + aW |w|)δ dV n

∥PW ∥(δ);aW := E(1 + aW |W |)δ

Remark.

(i) ∥·∥(0) = ∥·∥L1(V n), and ∥·∥(δ) is monotonically increasing in δ.

(ii) If dPW
dV n exists, ∥PW ∥(δ);aW =

∥∥∥dPW
dV n

∥∥∥
(δ);aW

.

We always have ∥PW ∥(δ);aW ≤ (2δ−1 ∨ 1)(1 + aδW E|W |δ). If δ ≤ 2, Jensen’s inequal-

ity then gives ∥PW ∥(δ);aW ≤ (2δ−1 ∨ 1)

(
1 + aδW

[
E|W |2

]δ/2)
. So an average power

constraint on W implies a decay norm bound on its probability distribution for all

0 < δ ≤ 2. The next theorem shows that decay norm bounds imply Lα bounds (which,

by Theorem 3.2.3, are the key component in entropy estimates):
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Lemma 3.4.2. Let W be semi-uniform with aW ≥ coW , and f : W → R be V n-

measurable. Suppose δ > 0, and N+δ
N+2δ ≤ α < 1. Then,

∫
W
|f(w)|α dV n ≤ e

(
κN,nωn
anW

)1−α
∥f∥α(δ);aW

Proof. We first consider the boundary case δ = N(1−α)
2α−1 , which is equivalent to α =

N+δ
N+2δ . Note also that αδ = (1− δ)(N + δ).

Set η(r) := 1 + aW |w|. Multiply |f |α by 1 = ηδαη−δα and apply Hölder’s inequality

with conjugate exponents (1− α)−1 and α−1:

∫
W
|f(w)|α dV n =

∫
W
η(|w|)−δα

[
|f(w)|η(|w|)δ

]α
dV n

≤
[∫

W
η(|w|)−(N+δ) dV n

]1−α[∫
W
f(w)η(|w|)δ

]α

Apply Lemma 3.4.1 to the first bracketed term and use aW ≥ coW :

∫
W
η(|w|)−(N+δ) dV n ≤ κN,nωn(N + δ)aW

∫ ∞

0

(
r

1 + aWr

)n( 1 + coWr

1 + aWr

)n′

η(r)−1−δ dr

≤ κN,nωn(N + δ)aW
1−n

∫ ∞

0
(1 + aWr)

−1−δ dr

≤ κN,nωn(1 +Nδ−1)aW
−n

Combining the inequalities and recognizing that (1+Nδ)1−α = (1+Nδ−1)δ/(N+2δ) ≤

(1 + Nδ−1)δ/N ≤ e completes the proof of the boundary case. The general case then

follows by the monotonicity of ∥·∥(δ);aW with respect to δ.

Corollary 3.4.3. Let W be semi-uniform with aW ≥ coW , δ > 0.
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(i) If f ∈ P(V n) and ∥f∥(δ);aW <∞, then hV n(f) exists, and

hV n(f) ≤ e3
[(
2 +Nδ−1

)
∨ log

(
κN,nωn
anW

)
∨ log∥f∥−1

1

]
∥f∥(δ);aW

(ii) Every PW ∈ P̂(V n) with E|W |δ ≤ K has well-defined hV n(PW ) bounded by

hV n(PW ) ≤ (2δ−1 ∨ 1)e3
[(
2 +Nδ−1

)
∨ log

(
κN,nωn
anW

)]
(1 + aδWK)

Proof. Combine Corollary 3.2.5(i) with Lemma 3.4.2 and take

α = 1−
[(
2 +Nδ−1

)
∨ log

(
κN,nωn
anW

)
∨ log∥f∥−1

(δ);aW

]−1

≥ N + δ

N + 2δ

Since ∥f∥1 ≤ ∥f∥(δ);aW , this gives (i). For (ii), use E(1 + aW |W |)δ ≤ (2δ−1 ∨ 1)(1 +

aδWE|W |δ).

Remark. In particular, this corollary proves that all PW ≪ V n satisfying an average

power constraint E|W |2 ≤ P have a well-defined entropy that is bounded above in

terms of the constant P.

We now combine our previous results into our primary tools for proving entropy

estimates and convergence results.

Theorem 3.4.4. Let W be semi-uniform with aW ≥ coW . Let δ > 0, b ∈ (1,∞].

Suppose f, g ∈ L1
+(V

n), hV n(g) exists and is finite, ∥f − g∥b ≤ cb, and ∥f − g∥(δ);aW ≤

cδ.

42



Then, hV n(f) exists, is finite, and satisfies the bound

|hV n(f)− hV n(g)| ≤ e3
[
(2 +Nδ−1) ∨ log

(
κN,nωn
anW

)
∨ log c−1

δ ∨ log c−1
b

]
cδ

+2e2(1− b−1)−1(∥f + g∥1 ∨ 1)cb

Proof. Combining Theorem 3.2.3 and Lemma 3.4.2 gives, for any α satisfying N+δ
N+2δ ≤

α < 1, (and using α−1 < 2):

|hV n(f)− hV n(g)| ≤ e

(
κN,nωn
anW

)1−α
(1− α)−1∥f − g∥α(δ);aW

+ 2e(1− b−1)−1∥f + g∥1−αb
−1

1 ∥f − g∥αb

≤ e

(
κN,nωn
anW

)1−α
(1− α)−1cαδ + 2e(1− b−1)−1(∥f + g∥1 ∨ 1)cαb

Take α := 1−
[
(2 +Nδ−1) ∨ log

(
κN,nωn

anW

)
∨ log c−1

δ ∨ log c−1
b

]−1
≥ N+δ

N+2δ .

Remark. Here is a typical application: Suppose Pε is an ε-indexed sequence in P̂(V n)

for ε ∈ [0, 1] satisfying an average energy constraint, and hV n(P0) exists and is fi-

nite. If ∥pε − p0∥b and ∥pε − p0∥(δ) are O(εl) as ε → 0, then hV n(Pε) = hV n(P0) +

O(εl log 1
ε ).

Theorem 3.4.5. Let W be semi-uniform with aW ≥ coW . Let δ > 0, b ∈ (1,∞]. Sup-

pose f, g ∈ L1
+(V

n), hV n(g) exists and is finite, ∥f − g∥b ≤ cb <∞, and ∥f − g∥(δ);aW ≤

cδ < 1.

Define the quantities c± :=
∣∣∫ f ± g dµ

∣∣, b′ := 1
1−b−1 , K := log+

(
κN,nωnc

b′
b aW

−n
)
/ log c−1

δ ,

α0 := K/(1 +K) ∈ [0, 1), and the function β(α) := α(1−b−1)
1−αb−1 [α− (1− α)K].
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Then hV n(f) exists and is finite, and we have the bound

|hV n(f)− hV n(g)| ≤ (c+ ∨ 1)e2(K + 1 + 2b′)

 1

1− β
(
N+δ
N+2δ

) ∨ log c−1
δ

cδ
+e3

[
1 +

∣∣∣∣log c+a
n
W

κN,nωn

∣∣∣∣+ (K + b′
)
log c−1

δ

]
c
1+ δ

N+δ

δ

In the special case of ∥f∥1 = ∥g∥1 = 1 (when f, g are probability densities), we have

the simpler bound

|hV n(f)− hV n(g)| ≤ 2e2(K + 1 + 2b′)

 1

1− β
(
N+δ
N+2δ

) ∨ log c−1
δ

cδ
Proof. Without loss of generality we assume cb ≥ (κN,nωnaW

−n)
b−1−1. β(α) was

defined so that

(
κN,nωnaW

−nc b
′

b

)α(1−α)(1−b−1)

1−αb−1
cδ

α2(1−b−1)

1−αb−1 = eβ(α) log cδ = c
β(α)
δ

Combining Theorem 3.2.4 and Lemma 3.4.2 we have, for all N+δ
N+2δ ≤ α < 1

|hV n(f)− hV n(g)| ≤
c 1−α
+ e

α(2−α)(1−b−1)

1−αb−1 (1− αb−1)

α(1− α)(1− b−1)
c
β(α)
δ +

+

∣∣∣∣∣log c+ − (1− α) +
1

1− αb−1
log

a
n(1−α)
W c αb

(κN,nωn)
1−αc αδ

∣∣∣∣∣c−
It is easy to verify that β(α0) = 0, β(1) = 1, and β is increasing on [α0, 1], thus

β−1 : [0, 1] → [α0, 1] is well-defined. Take

α = β−1

(
1−

[(
1− β

(
N+δ
N+2δ ∨ α0

))−1
∨ log c−1

δ

]−1
)

∈ [α0 ∨ N+δ
N+2δ , 1)
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which gives β(α) log cδ = log cδ +
log c−1

δ

(1−β( N+δ
N+2δ

∨α0))
−1∨log c−1

δ

≤ log cδ + 1, so in the above

bound we have
(
κN,nωnaW

−nc b
′

b

)α(1−α)(1−b−1)

1−αb−1
cδ

α2(1−b−1)

1−αb−1 ≤ e cδ.

The remaining parts of the bound are simplified as follows: α(2−α)(1−b−1)
1−αb−1 ≤ α(2 −

α) ≤ 1; c 1−α
+ ≤ c+ ∨ 1; With some algebra, and using α ≥ N+δ

N+2δ ≥ 1
2 ,

1− αb−1

α(1− α)(1− b−1)
=
K + 1 + b′/α

1− β

≤ (K + 1 + 2b′)

 1

1− β
(
N+δ
N+2δ ∨ α0

) ∨ log c−1
δ


With some additional algebra and using 1

1−αb−1 ≤ b′, we have

|hV n(f)− hV n(g)| ≤ (c+ ∨ 1)e2(K + 1 + 2b′)

 1

1− β
(
N+δ
N+2δ

) ∨ log c−1
δ

cδ+
+

[
1 +

∣∣∣∣log c+a
n
W

κN,nωn

∣∣∣∣+ log+
(
κN,nωna

−n
W c b

′
b

)
+ b′ log c−1

δ

]
c−

If ∥f∥1 = ∥g∥1 = 1 then c+ = 2 and c− = 0. Otherwise, by Hölder’s inequality applied

to |f − g| = |f − g|
α(1−b−1)

1−αb−1 |f − g|
1−α

1−αb−1 , we have

c− ≤ ∥f − g∥1 ≤ c
1−b−1

1−αb−1

α c
1−α

1−αb−1

b ≤
[
e cαδ

(
κN,nωna

−n
W c b

′
b

)1−α] 1−b−1

1−αb−1

≤ e
1−b−1

1−αb−1 c
β/α
δ ≤ e

1−b−1

1−αb−1 (e cδ)
1/α ≤ e3c

1+ δ
N+δ

δ

which allows us to express the bound in terms of cδ.

Corollary 3.4.6. Let W be semi-uniform with aW ≥ coW . Let δ > 0, b ∈ (1,∞].

Suppose p ∈ P̂(V n) and g ∈ L1
+(V

n), g ̸≡ 0, and define the probability density q ∈

P̂(V n) by normalizing g: q = ∥g∥−1
1 g. Suppose ∥p− g∥b ≤ cb <∞ and ∥p− g∥(δ);aW ≤
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cδ <∞.

If we also have (a) ∥p∥b < Cb < ∞ and ∥p∥(δ);aW < Cδ < ∞, or (b) If ∥g∥b < Cb <

∞ and ∥g∥(δ);aW < Cδ <∞, then hV n(p) and hV n(q) exist and are finite.

If either (a) or (b) holds, define the quantities c− := |1− ∥g∥1|, kb :=
(
∥g∥−1

1 ∨ 1
)
cb+(

∥g∥−1
1 Cb

)
c−, kδ :=

(
∥g∥−1

1 ∨ 1
)
cδ +

(
∥g∥−1

1 Cδ

)
c−.

If kδ < 1, also define b′ := 1
1−b−1 , K := log+

(
κN,nωnk

b′
b aW

−n
)
/ log k−1

δ , α0 :=

K/(1 +K) ∈ [0, 1), and the function β(α) := α(1−b−1)
1−αb−1 [α− (1− α)K].

We then have the bound

|hV n(p)− hV n(q)| ≤ 2e2(K + 1 + 2b′)

 1

1− β
(
N+δ
N+2δ

) ∨ log k−1
δ

kδ
Proof. This follows from the previous theorem applied to p and q, with the observa-

tion that p − q = (p − g) + (1 − ∥g∥1)∥g∥
−1
1 g = ∥g∥−1

1 (p − g) + (1 − ∥g∥−1
1 )p, and the

triangle inequality to get ∥p− q∥b ≤ kb and ∥p− q∥(δ);aW ≤ kδ.

We end with a key theorem for localizing our analysis in the next chapter.

Theorem 3.4.7 (Cutoff Theorem). Let W be semi-uniform of dimension n ≥ 1,

aW ≥ coW , R > 0, and δ ∈ (0, 1]. Let ψ ∈ L1
+[R,∞) be differentiable with ψ′ ∈

L1[R,∞), ψ′(r) ≤ −δψ(r)/r for all r ≥ R, and
∫∞
R rN−1+δψ(r) dr <∞.

(i) For all γ ∈ [0, δ], define the constants

bγ := sup
y∈RN

∫
|w−y|>R

|w − y|γψ(|w − y|) dV n(w)
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We have the bound:

bγ ≤ κN,nψ(R)ωnR
n+γ(1 + coWR)

n′
+

+ κN,nNωn

∫ ∞

R
ψ(r)rn−1+γ(1 + coWr)

n′
dr

(ii) Let µ ∈ P̂(RN ) with ∥µ∥(δ);aW < ∞. Suppose f, g ∈ L1
+(V

n), ∥g∥∞ < ∞,

∥g∥(δ);aW <∞ and suppose that for all w ∈ W,

|f(w)− g(w)| ≤
∫
|y−w|>R

ψ(|y − w|) dµ(y)

Then hV n(f) and hV n(g) exist and are finite, and

∥f − g∥∞ ≤ ψ(R)

∥f − g∥1 ≤ b0

∥f − g∥(δ);aW ≤
(
aδWbδ + ∥µ∥(δ);aWb0

)

(iii) In particular, let ψ(r) = φn,ε(r) := (2πε2)−n/2 exp
(
−r2/2ε2

)
. For all R ≥

√
N + 1 ε,

∥f − g∥∞ ≤
[

1

2πε2
exp

(
− R2

nε2

)]n/2
∥f − g∥1 ≤ 4Nn−1/2

[(
eN

n′

) 1
2

(1 + coWR)

]n′[
R2

nε2
exp

(
− R2

nε2

)]n/2

∥f − g∥(δ) ≤ 4Nn−
1
2

[
∥µ∥(δ);aW + 1 + aWR

][(eN
n′

) 1
2

(1 + coWR)

]n′[
R2

nε2
exp

(
− R2

nε2

)]n/2

Example 3.4.1. The bounds of (iii) are O(e−R
2/Cε2), so by Theorem 3.4.4, |hV n(f)− hV n(g)|
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is too. For example, suppose X is a random variable on RN , Z ∼ N (0, ε2IN ), and

Z ′ ∼ PZ | (|Z|<R). Setting Y = W + Z and Y ′ = W + Z ′, (iii) and Lemma 3.3.1

show that h(Y ) − h(Y ′) = O(e−R
2/Cε2) (assuming h(Y ) is finite). Note that this is a

significantly stronger statement than the straightforward observation P(|Z| ≥ R) =

O(e−R
2/Cε2).

Proof. (i) Note that ψ′(r) ≤ −γψ(r)/r ⇔ d
dr [ψ(r)r

γ ] ≤ 0, so, applying Lemma 3.4.1,

∫
|w−y|>R

|w − y|γψ(|w − y|) dV n(w) ≤ κN,nωn

∫ ∞

R
− d

dr
[ψ(r)rγ ]rn(1 + coWr)

n′
dr

Integrate by parts, ignoring the term at r = ∞ since
∫∞
R rN+δψ(r) dr < ∞ =⇒

limr→∞ rN+γψ(r) = 0:

bγ ≤ κN,nψ(R)ωnR
n+γ(1 + coWR)

n′
+

+ κN,n

∫ ∞

R
ψ(r)ωnr

n−1rγ(n+NcoWr)(1 + coWr)
n′−1 dr

which is less than the stated bound.

(ii) The L∞ bound is immediate. The L1 bound is:

∫
W
|f(w)− g(w)| dV n ≤

∫
W

∫
|y−w|>R

ψ(|y − w|) dµ(y) dV n(w)

≤
∫ [∫

|w−y|>R
ψ(|w − y|) dV n(w)

]
dµ(y) ≤ b0
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For the decay norm estimate, we have

∥f − g∥(δ);aW ≤
∫ ∫

|y−w|>R
(1 + aW |w|)δψ(|y − w|) dV n(w) dµ(y)

≤
∫ ∫

|y−w|>R

[
aδW |y − w|δ + (1 + aW |y|)δ

]
ψ(|y − w|) dV n(w) dµ(y)

≤
(
aδWbδ + ∥µ∥(δ);aWb0

)

The entropy is finite by Corollary 3.2.5.

(iii) Define random variables Z(k) ∼ N (0, Ik) for k ∈ {n, n + 1, . . . , N + 1}. The

Gaussian tail expectations can be written as

∫ ∞

R
rk−1φn,ε(r) dr =

(2πε2)
k−n
2

kωk

∫ ∞

R
kωkr

k−1φkε(r) dr

=
(2πε2)

k−n
2

kωk
P
[∣∣∣Z(k)

∣∣∣ ≥ Rε−1
]

The Chernoff tail bound for Z(k) is P[
∣∣Z(k)

∣∣2 ≥ kt] ≤ (te1−t)k/2 for t ≥ 1, so when

R ≥
√
k ε we have

∫ ∞

R
rk−1φn,ε(r) dr ≤

(2πε2)
k−n
2

kωk

[
eR2

kε2
exp

(
− R2

kε2

)]k/2
≤ 1

kωk

(
2πe

k

)k/2
Rkφn,ε(R)

Using the Sterling bound for the Gamma function, extended to [32 ,∞), we have ω−1
k =

Γ(1 + k/2)π−k/2 ≤
√
eπk/2

(
k

2πe

)k/2
=⇒

∫∞
R rk−1φn,ε(r) dr <

(
eπ
2n

)1/2
Rkφn,ε(R).

This estimate extends linearly to tail expectations of polynomials in r, giving the
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bound, for γ ∈ [0, 1] (using rγ ≤ 1 + r):

∫ ∞

R
φn,ε(r)r

n−1+γ(1 + coWr)
n′
dr ≤

∫ ∞

R
φn,ε(r)r

n−1(1 + r)(1 + coWr)
n′
dr

≤
(eπ
2n

)1/2
Rn(1 +R)(1 + coWR)

n′
φn,ε(R)

So for γ ∈ [0, δ] and Rε−1 ≥
√
N + 1,

bγ ≤
[
1 +N

(eπ
2n

) 1
2

]
κN,nωnR

n(1 +R)(1 + coWR)
n′
φn,ε(R)

≤
[
1 +

(eπ
2

) 1
2

](e
2

) 1
2
Nn−

1
2

(
N

n

)n
2
(
N

n′

)n′
2
(
2πe

n

)n
2

Rn(1 +R)(1 + coWR)
n′
φn,ε(R)

≤ 4Nn−
1
2 (1 +R)

[(
eN

n′

) 1
2

(1 + coWR)

]n′[
R2

nε2
exp

(
− R2

nε2

)]n
2
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4
Asymptotic Capacity Results

The primary objective of this chapter is to prove Theorem 4.3.1, which states that an

AWGN channel with an average power constraint and scale-invariant alphabet con-

straint X/|X| ∈ Ω (Ω a smooth, compact (n − 1)-dimensional submanifold of Sn−1,

possibly with boundary), has high-SNR capacity

Cap(SNR) ≈ n

2
log(1 + SNR) + log

V n−1(Ω)

V n−1(Sn−1)

A closely related result, applicable only to the special case of Grassmann manifolds,

was proven in [14] in the context of multiple antenna channels, and includes an addi-

tional term corresponding to a noncoherent fading block channel model that we do
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not consider. The geometric “sphere packing” interpretation presented by Zheng an

Tse applies equally well to our general result.

Let PX be any probability measure for an AWGN channel X → Y = RN with

average noise ε2 per degree of freedom. Denoting the noise pdf by pZε(z) = φNε (|z|) ≡

(2πε2)−
N
2 e−|z|2/2ε2 we then have

pYε(y) =

∫
X
φNε (|y − x|) dPX(x) =

∫
X
pX(x)φ

N
ε (|y − x|) dV n(x)

where the second equality holds whenever pX := dPX
dV n exists. Beginning our capacity

calculation in the standard way for AWGN channels,

I(X;Yε) = h(Yε)− h(Yε|X) = h(Yε)− h(Zε) = h(Yε)−
N

2
log
(
2πeε2

)
(4.0.1)

Thus capacity will be achieved by the PX which maximizes the corresponding h(Yε)

(subject to any code-level constraints imposed on PX , such as an average power con-

straint). Heuristically, when noise corruption ε2 is small, one expects h(Yε) to be max-

imized by a PX of maximal, or nearly-maximal entropy. This intuition is largely cor-

rect: we will show that, to a zeroth-order approximation in ε2, maximizing hV n(X)

maximizes h(Yε). For a more precise capacity approximation in ε2, the geometry of

the embedding X ⊂ RN also plays a role, and the optimal PX may be a perturbation

from the hV n(X)-maximizing distribution.

Even in the zeroth-order case, we require some mild geometric prerequisites to jus-

tify our conclusions, and the situation must be analyzed carefully. When n < N ,

PX and PYε are supported on spaces of different dimensionality, and the entropies

hV n(X) and h(Yε) are taken with respect to different measures. In fact, for a mani-
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fold X which fails to be uniform in the sense of the previous chapter, the PX maximiz-

ing h(Yε) need not be even approximately maximal in hV n(X) for any ε > 0.

4.1 Preliminaries

In the next two sections X ⊂ RN will be assumed a smooth submanifold that is uni-

form in the sense of Definition 3.4.1 for some constant cX < ∞. This assumption

holds automatically for compact X , as well as many non-compact submanifolds. We

will subsequently be able to extend the entropy and capacity estimates of this section

to wider classes of X ⊂ RN .

4.1.1 Entropy in a Tubular Parameterization

We will need the following lemma multiple times in the proceeding sections:

Lemma 4.1.1. Let xy, x ∈ X with r = dX (x, xy) < ρ⊤(X ) and νy ∈ T⊥
xyX with

|νy| < ρ⊥(X ). For y := xy + νy the euclidean distance can be written

|y − x|2 = |νy|2 + r2[1 + δ⊤(x) + νy · δ⊥(x)]

where δ⊤(x) ∈ R and δ⊥(x) ∈ T⊥
xyX . These quantities satisfy the bounds

|δ⊤(x)| ≤
1

2
c2IIr

2 and |δ⊥(x)| ≤ cII . (4.1.1)

Combined, we have the simplified bounds, valid for r ≤
(√

2cX
)−1:

1

2

(
|νy|2 + r2

)
≤ |y − x|2 ≤ 3

2

(
|νy|2 + r2

)
(4.1.2)
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Proof. Let x = x(r) be an arc-length parameterized geodesic with x(0) = xy, and

expand the function f(r) := |νy + xy − x(r)|2 in a Taylor series about r = 0 up to a

2nd order error term. We have f(r) = |νy|2 + [x(r)− xy] · [x(r)− xy]− 2νy · [x(r)− xy],

and f(0) = |νy|2. Differentiating, f ′(r) = 2x′(r) · [x(r)− xy]− 2νy · x′(r), and f ′(0) = 0.

Using |x′(r)| ≡ 1 and Lemma 2.4.2(i),

1

2
f ′′(r) =

∣∣x′(r)∣∣2 + x′′(r) · [x(r)− xy − νy]

= 1 + IIx(r)(x′(r), x′(r)) · [x(r)− xy]− IIx(r)(x′(r), x′(r)) · νy

and the mean-value form of the Taylor remainder gives, for some 0 ≤ s ≤ r,

f(r) = |νy|2 + r2
[
1 + r2 IIx(s)(x′(s), x′(s)) · [x(s)− xy]− IIx(s)(x′(s), x′(s)) · νy

]
Setting δ⊥(x(r)) := −ProjT⊥

xyX
[IIx(s)(x′(s), x′(s))], its bound is immediate.

For δ⊤(x(r)) := IIx(s)(x′(s), x′(s)) · [x(s) − xy], Lemma 2.4.2(ii) gives, for some

t ∈ [0, s],

δ⊤(x(r)) =
1

2
s2 IIx(s)(x′(s), x′(s)) · IIx(t)(x′(t), x′(t))

which satisfies the stated bound.

For the final bound note that, by Young’s inequality, |νy · δ⊥(x)| ≤ 1
2r

−2|νy|2 +

1
2r

2|δ⊥(x)|2, apply the previous estimates, and use c2IIr2 ≤
1
2 .

4.1.2 Applying the Cutoff Theorem

Let UX
R be a tubular neighborhood of some radius R ≤

(√
2 cX

)−1 about X . Every

y ∈ UX
R may be uniquely represented as y = xy + νy with xy ∈ X , νy ∈ T⊥

xyX . In
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order to estimate hmN (Yε) in this geometrically-attuned tubular parameterization, we

replace the true probability density pYε(y) with

fYε(y) :=


∫
BX

R (xy)
φN,ε(|νy + xy − x̃|) dPX(x̃), y ∈ UX

R

0, otherwise.

In order to apply the cutoff theorem, we prove:

Lemma 4.1.2. Let R ≤
(√

2 cX
)−1 and δ ∈ (0, 1]. If |νy| ∨ dX (x, xy) ≥ R then

|νy + xy − x| ≥ R√
2
.

Proof. Let γ : [0, 1] → RN be the straight line with γ(0) = x and γ(1) = y := xy + νy.

Let U := {y′ ∈ RN : dX (x, xy′) ∨
∣∣νy′∣∣ < R}. Since x ∈ U and y /∈ U , there is a t∗ ∈

(0, 1] with γ(t∗) ∈ ∂U , so dX (x, xγ(t∗)) ∨
∣∣νγ(t∗)∣∣ = R. By (4.1.2), 1

2R
2 ≤ |γ(t∗)− x|2.

Observing that |γ(t∗)− x| ≤ |y − x| completes the proof.

By the preceding lemma and the definition of fYε , we have

|pYε(y)− fYε(y)| ≤
∫
|x−y|≥ R√

2

φN,ε(|y − x̃|) dPX(x̃)

We will apply the cutoff theorem (Theorem 3.4.7(iii)) with W = RN and µ = PX ,

followed by Theorem 3.2.3, to estimate the error in our entropy estimates incurred by

this restriction. Once ε ≤ R(N+1)−
1
2 , the error decays rapidly in ε, as O

(
exp
(
−R2/2ε2

))
.

Therefore, we focus our analysis on estimating and maximizing hmN (fYε), for which a

tubular parameterization is available.
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4.1.3 Definition of fXε

At each x ∈ X , expmx(τ) maps τ ∈ TxX with |τ | ≤ R into BX
R (x). When x is fixed

we also use the polar notation τ = rω̂ and expmx(rω̂) = γω̂(r), where, by definition of

geodesic coordinates, γω̂ is the arc-length parameterized geodesic with γω̂(0) = x and

γ′ω̂(0) = ω̂. We write dmn(τ) for the infinitesimal Euclidean n-volume on TxX ≊ Rn,

which relates to dV n via the Jacobian factor Jx(τ) ≡ dV n(expmx)
dmn (τ).

In order to state our first main result we will need to define the auxiliary function

fXε ∈ P(V n) as

fXε(x) :=

∫
BX

R (x)
φn,ε(dX (x, x̃)) Jx(x̃)

−1 dPX(x̃)

Note that if X is a flat plane, and in the limit of R → ∞, this definition reduces to

the n-dimensional convolution of PX with the N (0, ε2In) Gaussian distribution. In

general fXε may be considered to be a type of n-dimensional smoothing of PX . The

properties of fXε required for our results are proven in Section 4.2.1 below.

4.2 I(X;Yε) for General PX; Capacity when X Compact

Theorem 4.2.1 (Asymptotic Mutual Information For General PX). Let X be a

smooth n-dimensional submanifold of RN , that is uniform in the sense of Definition

3.4.1, with N ≥ 1 and 0 < cX < ∞. Let δ ∈ (0, 1] and require PX ∈ P̂(X ) with

E|X|δ < ∞. Suppose Yε = X + Z where Z ∼ N (0, ε2IN ) with Z ⊥ X, and assume

cX ε ≤ (20 ∨ 2(N + 1))−1/2. Then,

∣∣∣∣I(X;Yε)−
[
n

2
log

1

2πeε2
+ hV n(fXε)

]∣∣∣∣ ≤ const(n,N)δ−1∥PX∥(δ)(cX ε)
2 log2(cX ε)

−1
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Suppose, in addition, that pX := dPX
dV n ∈ P̂(V n) exists and is C2(X ). Define the

function D2pX ∈ P(V n) by

D2pX(x) := sup
{γ(t) : γ(0)=x,|γ′(0)|=1}

∣∣(pX ◦ γ)′′(0)
∣∣

If
∥∥D2pX

∥∥
(δ)
<∞ and

∥∥D2pX
∥∥
∞ <∞, then

∣∣∣∣hN (pYε)− n′

2
log(2πeε2)− hV n(PX)

∣∣∣∣ ≤ const(n,N)δ−1∥PX∥(δ)(cX ε)
2 log2(cX ε)

−1+

+const(n)δ−1
∥∥D2pX

∥∥
(δ)
ε2
[
1 + log+

(
c−nX

∥∥D2pX
∥∥
∞ε

2
)]

Proof. The details of certain estimates needed in the proof are given in subsections

4.2.1 and 4.2.2 below, in order to focus here on the overall approach.

Take R =
[

4e
e−1 log(cX ε)

−1
]1/2

ε. When cX ε ≤ (20 ∨ 2(N + 1))−1/2 this choice

satisfies the following easily-verified inequalities: R < (
√
2 cX )

−1, R√
2
>

√
N + 1 ε, and

(needed in evaluating cutoff theorem bounds)

[
R2

nε2
exp

(
− R2

nε2

)]n/2
≤ exp

(
−R2

2ε2
(
1− e−1

))
≤ (cX ε)

2

Define ϕ(R)
k,ε (r) := 1[0,R](r)ϕk,ε(r). Inside the tubular neighborhood UX

R , using Lemma

4.1.1, and the shorthand r := dX (xy, x̃), we have:

fYε(y) =

∫
BX

R (xy)
φN,ε(|y − x̃|) dPX(x̃)

= φn′,ε(|νy|)
∫
BX

R (xy)

(
2πε2

)−n
2 e−

r2

2ε2
[1+δ⊤(x̃)+νy ·δ⊥(x̃)] dPX(x̃)

= φn′,ε(|νy|)
∫
φ(R)
n,ε (r)e

− r2

2ε2
δ⊤ cosh

(
r2

2ε2
νy · δ⊥

)[
1− tanh

(
r2

2ε2
νy · δ⊥

)]
dPX(x̃)
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In Section 4.2.2 we define the function gYε ∈ L1
+(UX

R ), and its νy-even and odd parts,

respectively:

gYε(y) := φn′,ε(|νy|)
∫
φ(R)
n,ε (r) Jx(x̃)

−1

[
1− tanh

(
r2

2ε2
νy · δ⊥

)]
dPX(x̃)

ge(y) := φn′,ε(|νy|)
∫
φ(R)
n,ε (r) Jx(x̃)

−1 dPX(x̃) ≡ φn′,ε(|νy|) fXε(xy)

go(y) := φn′,ε(|νy|)
∫
φ(R)
n,ε (r) Jx(x̃)

−1 tanh

(
− r2

2ε2
νy · δ⊥

)
dPX(x̃)

Lemma 4.2.8 of that section, the cutoff theorem, and the triangle inequality together

give

∥pYε − gYε∥∞ ≤ const(n,N)ε−N

∥pYε − gYε∥1 ≤ const(n,N)(cX ε)
2

∥pYε − gYε∥(δ);cX ≤ const(n,N)δ−1∥PX∥(δ)(cX ε)
2

Define the normalized probability density qYε = ∥gYε∥
−1
1 gYε . We may obtain an es-

timate of hN (pYε) − hN (qYε) by Theorem 3.2.3, and when (cX ε) is sufficiently small,

Corollary 3.4.6 applies, giving a bound

|hN (pYε)− hN (qYε)| ≤ const(n,N)δ−1∥PX∥(δ)(cX ε)
2 log(cX ε)

−1

Similarly, Lemma 4.2.10 gives us

∣∣∣∣hN (qe)− [hV n(fXε) +
n′

2
log(2πeε2)

]∣∣∣∣ ≤ const(n,N)δ−1∥PX∥(δ)(cX ε)
2 log(cX ε)

−1

To complete the estimate of hN (pYε) we need |hN (qYε)− hN (qe)|, which is provided by
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Lemma 4.2.11

|hN (qYε)− hN (qe)| ≤ const(n,N)δ−1∥PX∥(δ)cX
2
[
R2 + ε2

]
log(cX ε)

−1

≤ const(n,N)δ−1∥PX∥(δ)(cX ε)
2 log2(cX ε)

−1

In the case when pX ∈ C2(X ) exists, the entropy estimate follows by Lemma 4.2.5

and Theorem 3.2.4, or Corollary 3.4.6 for sufficiently small ε.

Theorem 4.2.2 (Asymptotic Channel Capacity for Compact Alphabets). Let X be

a smooth, compact n-dimensional submanifold of RN with N ≥ 1 and diameter d.

Define a communications channel X −→ Yε = X + Z where Z ∼ N (0, ε2IN ) and Z ⊥

X. If cX ε ≤ (20 ∨ 2(N + 1))−1/2 then the channel capacity (in nats) is approximated

by

∣∣∣∣Cap(ε)− [n2 log
1

ε2
+ log

V n(X )

(2πe)n/2

]∣∣∣∣ ≤ const(n,N)
(
1 + 1

2cXd
)
(cX ε)

2 log2(cX ε)
−1

Proof. Since X is compact, it is automatically uniform with cX > 0. For any PX ∈

P̂(X ) we can apply Theorem 4.2.1 with δ = 1. By shifting X by the appropriate

vector in RN we may assume ∥PX∥(δ) ≤ 1 + 1
2cXd, and

∣∣∣∣I(X;Yε)−
[
n

2
log

1

2πeε2
+ hV n(fXε)

]∣∣∣∣ ≤ const(n,N)
(
1 + 1

2cXd
)
(cX ε)

2 log2(cX ε)
−1

By Lemma 3.1.1 and Lemma 4.2.4,

Cap(ε)−
[
n

2
log

1

ε2
+ log

V n(X )

(2πe)n/2

]
≤ const(n,N)

(
1 + 1

2cXd
)
(cX ε)

2 log2(cX ε)
−1

To complete the proof we need only show that the claimed asymptotic capacity can
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be achieved (up to the stated error term). Take the volume-constant PX = V n(X )−1V n,

giving hV n(PX) = log V n(X ), and note that pX is constant, hence D2pX = 0. The

bound now follows by the second half of Theorem 4.2.1.

4.2.1 The fXε Auxiliary Function

In the subsequent bounds we will use the following notation:

ξ(ρ) :=

[
cXρ

sin(cXρ)

]n−1

η(ρ) :=

[
sinh(cXρ)

sin(cXρ)

]n−1

η2k,n,cX ε :=
n−1∑
l=0

(
n− 1

l

)
(n+ 2k + 2l − 2)!!

(n+ 2k − 2)!! 2l
(cX ε)

2l

The functions ξ(ρ) and η(ρ) come into play using Lemma 2.4.3 and Theorem 2.4.4 to

bound Jx terms. Below we apply these bounds as needed without further comment.

ηk,n,cX ε is a bounding constant of the form ηk,n,cX ε = 1 + O
(
(cX ε)

2
)

; It will arise

below from the following:

Lemma 4.2.3. For R ≤
(√

2 cX
)−1,

∫
η(r)

(r
ε

)2k
χ(R)
n,ε (r) dr ≤

(n+ 2k − 2)!!

(n− 2)!!
η2k,n,cX ε

Proof. By Taylor’s theorem, for 0 ≤ x ≤ 2−1/2, sinhx ≤ x + cosh(2−1/2)
6 x2, and

sinx ≥ 1 − 1
6x

2, so sinhx
sinx ≤ 1+ 1

6
cosh(2−1/2)x2

1− 1
6
x2

≤ 1 + 1+cosh(2−1/2)
6−x2 x2 ≤ 1 + 1

2x
2 and

η(r) ≤
(
1 + 1

2c
2
X r

2
)n−1

=
∑n−1

l=0

(
n−1
l

)(
cX r√

2

)2l
. Plugging this in to the integral and

using
∫
r2mχn,ε(r) dr =

(n−2+2m)!!
(n−2)!! ε2m gives the result.

The following properties of fXε will be needed in the main results:
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Lemma 4.2.4. For R ≤
(√

2 cX
)−1 and δ ∈ (0, 1] we have

|1− ∥fXε∥1| ≤ η0,n,cX ε − 1 =
n(n− 1)

2
(cX ε)

2 +O((cX ε)
4)

∥fXε∥(δ) ≤ 2η0,n,cX ε∥PX∥(δ) ≤ 2η(2−
1
2 )∥PX∥(δ)

Proof. Rearranging order of integration, changing to geodesic coordinates centered at

x̃, and using the normalization properties of the integrals:

∥fXε∥1 =
∫∫

φ(R)
n,ε (dX (x, x̃)) Jx(x̃)

−1 dPX(x̃) dV
n(x)

=

∫ [∫
φ(R)
n,ε (dX (x, x̃)) Jx(x̃)

−1 dV n(x)

]
dPX(x̃)

=

∫ [∫
φ(R)
n,ε (|τ |)

Jx̃(τ)

Jexpmx̃ τ (x̃)
dmn(τ)

]
dPX(x̃)

= 1 +

∫ [∫
φ(R)
n,ε (|τ |)

(
Jx̃(τ)

Jexpmx̃ τ (x̃)
− 1

)
dmn(τ)

]
dPX(x̃)

For any a > 0 we have a − 1 ≥ 1 − a−1, so changing to geodesic polar coordinates

τ = rω̂ and taking a = η(r), note that

∣∣∣∣ Jx̃(τ)

Jexpmx̃ τ (x̃)
− 1

∣∣∣∣ ≤ [η(r)− 1] ∨
[
1− η(r)−1

]
≤ η(r)− 1

Therefore, |1− ∥fXε∥1| ≤
∫
χ
(R)
n,ε (r) [η(r)− 1] dr = η0,n,cX ε − 1.

Similarly for the decay norm, using (1 + cX |x|)δ ≤
[
(1 + cX |x̃|)δ + (cX |x− x̃|)δ

]
,
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(cX r)
δ ≤ 2−δ/2 < 1, and ∥PX∥(δ) ≥ 1:

∥fXε∥(δ) =
∫∫

(1 + cX |x|)δφ(R)
n,ε (dX (x, x̃)) Jx(x̃)

−1 dPX(x̃) dV
n(x) dPX(x̃)

≤
∫
(1 + cX |x̃|)δ

[∫
χ(R)
n,ε (r) η(r) dr

]
dPX(x̃)+

+

∫∫
(cX |r|)δ

[∫
χ(R)
n,ε (r) η(r) dr

]
dPX(x̃)

≤ η0,n,cX ε

[
∥PX∥(δ) + 1

]
≤ 2η0,n,cX ε∥PX∥(δ)

Lemma 4.2.5. Suppose pX := dPX
dV n exists and is C2(X ), and δ ∈ (0, 1]. We have:

∥fXε − pX∥∞ ≤ n

2

∥∥D2pX
∥∥
∞ε

2

∥fXε − pX∥1 ≤ η2,n,cX ε
n

2

∥∥D2pX
∥∥
1
ε2

∥pXε − pX∥(δ) ≤ η2,n,cX ε n
∥∥D2pX

∥∥
(δ)
ε2

Proof. Fix x and change to a geodesic polar coordinate system centered on it, de-

noted τ = rω̂ ∈ TxX :

fXε(x) =

∫
φ(R)
n,ε (dX (x, x̃)) Jx(x̃)

−1 pX(x̃) dV
n(x̃)

=

∫
φ(R)
n,ε (|τ |) pX(expmx(τ)) dm

n(τ)

=

∫
χ(R)
n,ε (r)

[
1

nωn

∫
Sn−1

pX(expmx(rω̂)) dω̂

]
dr

where dω̂ is the standard (n − 1)-dimensional measure on solid angles ω̂ ∈ Sn−1 ⊂ Rn.
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Using
∫
χ
(R)
n,ε (r) dr = 1 and the fundamental theorem of calculus,

fXε(x)− pX(x) =

∫
χ(R)
n,ε (r)

[
1

nωn

∫
Sn−1

pX(γω̂(r))− pX(x) dω̂

]
dr

=

∫
χ(R)
n,ε (r)

[
1

nωn

∫
Sn−1

∫ r

0
Dγ′ω̂(t)

[pX(γω̂(t))] dt dω̂

]
dr

=

∫
χ(R)
n,ε (r)

∫ r

0

[
1

nωn

∫
Sn−1

Dγ′ω̂(t)
[pX(γω̂(t))] dω̂

]
dt dr

For brevity, we write the integral over r as a probability expectation, and take abso-

lute value, yielding

|fXε(x)− pX(x)| ≤ Er
[∫ r

0

1

nωn

∣∣∣∣∫
Sn−1

Dγ′ω̂(t)
[pX(γω̂(t))] dω̂

∣∣∣∣ dt]

By symmetry,
∫
Sn−1 Dγ′ω̂(0)

[pX(γω̂(0))] dω̂ = 0, so we can use the FTC again:

|fXε(x)− pX(x)| ≤ Er
[∫ r

0

∫ t

0

1

nωn

∣∣∣∣∫
Sn−1

D2
γ′ω̂(u)γ

′
ω̂(u)

[pX(γω̂(u))] dω̂ du

∣∣∣∣ dt]
≤ Er

[∫ r

0

∫ t

0

1

nωnun−1

∫
Sn−1
u

∣∣D2pX(γω̂(u))
∣∣ dσn−1 du dt

]
(4.2.1)

where σn−1 is the standard (n − 1)-dimensional volume measure on the euclidean

sphere of radius u, and in the final line we have used the fact that |γ′ω̂| ≡ 1. From

(4.2.1) we easily get the L∞ bound:

|fXε(x)− pX(x)| ≤ Er
[∫ r

0

∫ t

0

∥∥D2pX
∥∥
∞ du dt

]
=
n

2

∥∥D2pX
∥∥
∞ε

2

We now turn to estimating ∥fXε − pX∥(δ) with δ ∈ [0, 1] (The L1 bound will be

given by the case δ = 0.) Again for brevity, we will use the following temporary nota-
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tion below (ρ > 0 and x, x′ ∈ X :

ψ(ρ, x, x′) :=
∣∣Bn

ρ

∣∣−1
1[0,ρ](dX (x, x

′))
∣∣D2pX(x

′)
∣∣

Note that
∫
Sn−1
u

f(uω̂) dσn−1 = d
du

[∫
Bn

u
f(uω̂) dmn

]
, so, returning to the inner inte-

grals of (4.2.1), we can apply integration by parts, followed by changing variables to

integrate over X :

∫ t

0

1

nωnun−1

∫
Sn−1
u

∣∣D2pX(γω̂(u))
∣∣ dσn−1 du =

=
1

nωntn−1

∫
Bn

t

∣∣D2pX(γω̂(t))
∣∣ dmn +

∫ t

0

n− 1

nωnun

∫
Bn

u

∣∣D2pX(γω̂(u))
∣∣ dmn dt

=
t

n|Bn
t |

∫
BX

t (x)

∣∣D2pX
∣∣

Jx ◦ expm−1
x

dV n +

∫ t

0

n− 1

n|Bn
u |

∫
BX

u (x)

∣∣D2pX
∣∣

Jx ◦ expm−1
x

dV n du

≤ t ξ(t)

n

∫
X
ψ(t, x, x′) dV n(x′) +

n− 1

n

∫ t

0
ξ(u)

∫
X
ψ(u, x, x′) dV n(x′) du

≤ t ξ(t)

∫
X
ψ(t, x, x′) dV n(x′)

Integrating (4.2.1) and rearranging order of integration, we now have

∥fXε − pX∥(δ) ≤ Er
[∫ r

0
t ξ(t)

∫∫
(1 + cX |x|)δψ(t, x, x′) dV n(x′) dV n(x) dt

]
(4.2.2)

Note that if we could replace |x| with |x′| in the above, we could use

∫∫
(1 + cX

∣∣x′∣∣)δψ(ρ, x, x′) dV n(x′) dV n(x) =

∫∫
(1 + cX

∣∣x′∣∣)δψ(ρ, x, x′) dV n(x) dV n(x′)

=
∣∣Bn

ρ

∣∣−1
∫
(1 + cX

∣∣x′∣∣)δ∣∣D2pX(x
′)
∣∣ ∫

BX
ρ (x′)

dV n(x) dV n(x′)

≤
[
sinh(cXρ)

cXρ

]n−1∥∥D2pX
∥∥
(δ)

(4.2.3)
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In the δ = 0 case, (1 + cX |x|)δ = (1 + cX |x′|)δ = 1, so (4.2.3) can be immediately

combined with (4.2.2) to get

∥fXε − pX∥1 ≤
∥∥D2pX

∥∥
1
Er
[∫ r

0
t η(t) dt

]
≤
∥∥D2pX

∥∥
1
Er
[
1

2
r2η(r)

]
≤ η2,n,cX ε

n

2

∥∥D2pX
∥∥
1
ε2

When δ ∈ (0, 1], note that

(1 + cX |x|)δ ≤ (1 + cX
∣∣x′∣∣+ cX

∣∣x− x′
∣∣)δ ≤ (1 + cX

∣∣x′∣∣+ cXdX (x, x
′))δ

≤
[
(1 + cX

∣∣x′∣∣)δ + cδXdX (x, x
′)δ
]

Applying this to (4.2.2) and (4.2.3) we have (using cX t ≤ cXR < 1 and ∥·∥1 ≤ ∥·∥(δ))

∥fXε − pX∥(δ) ≤
∥∥D2pX

∥∥
(δ)

Er
[∫ r

0
t η(t) dt

]
+
∥∥D2pX

∥∥
1
Er
[∫ r

0
(cX t)

δt η(t) dt

]
≤ 2
∥∥D2pX

∥∥
(δ)

Er
[∫ r

0
t η(t) dt

]
≤ 2
∥∥D2pX

∥∥
(δ)

Er
[
1

2
r2η(r)

]
≤ η2,n,cX ε

∥∥D2pX
∥∥
(δ)
nε2

4.2.2 The gYε , ge, and go Auxiliary Functions

Define the function gYε ∈ P(mN ), using the shorthand r = dX (x, x̃), as

gYε(y) := φn′,ε(|νy|)
∫
φ(R)
n,ε (r) Jx(x̃)

−1

[
1− tanh

(
r2

2ε2
νy · δ⊥

)]
dPX(x̃)
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Lemma 4.2.6. When R ≤
(√

2cX
)−1, we have the following bounds:

∆⊤ :=

∣∣∣∣exp(− r2

2ε2
δ⊤

)
− 1

∣∣∣∣ ≤ exp

(
r2

8ε2

)
c2X r

4

4ε2

∆⊥ :=

∣∣∣∣cosh( r2

2ε2
νy · δ⊥

)
− 1

∣∣∣∣ ≤ exp

(
r2 + |νy|2

4
√
2ε2

)
c2X r

2|νy|2

8ε2

∆J := |J − 1| ≤
(
1 + 1

4c
2
X r

2
)n−1

∆J−1 :=
∣∣J−1 − 1

∣∣ ≤ 1
4(n− 1)c2X r

2

Proof. The first two bounds follow from Taylor’s theorem, Lemma 4.1.1, and the as-

sumption cX r ≤ 2−1/2. For the second bound we also use Young’s inequality to yield

r|νy| ≤ 1
2

(
r2 + |νy|2

)
. For the last two bounds, start with Corollary 2.4.5. When

x = cX r ≤ 2−1/2 we have, again by Taylor, sinh(x)
x ≤ 1 + 1

6 cosh(2
−1/2)x2 ≤ 1 + 1

4x
2.

This gives the third bound, and the final bound when combined with (1+y)n−1 ≤ and

(1 + y)1−n ≥ 1− (n− 1)y + n(n−1)
2 y2.

We will use the notation

kk,a,ε :=
(n+ 2k − 2)!!

(n− 2)!!(1− a)k+n/2
ε2k

Lemma 4.2.7. If 0 ≤ a < 1 and k ≥ 0, k ∈ Z, then
∫∞
0 e

ar2

2ε2 r2k χn,ε(r)dr = kk,a,ε.

Proof. This is easily computed by the change of variable r 7→ (1− a)1/2r.
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Lemma 4.2.8. For R ≤ (
√
2cX )

−1 and δ ∈ (0, 1], we have

∥fYε − gYε∥∞ ≤ 2n+1ε−N

∥fYε − gYε∥1 ≤ const(n,N)(cX ε)
2

∥fYε − gYε∥(δ);cX ≤ ∥PX∥(δ);cX ∥fYε − gYε∥1

Remark. fYε and gYε are defined on the tubular neighborhood UX
R ⊂ RN , and the

above norms are with respect to mN . As an open subset of RN , coUX
R

= 0, but the

decay norm is weighted using aUX
R

= cX to facilitate conversion to a decay norm on X .

Proof. Using Lemma 4.2.6, |tanh t| ≤ 1, and
∣∣ t
sin t

∣∣ ≤ (1 − t2

6 )
−1 ≤ 12

11 when t = cX r ≤

2−1/2, we have the L∞ bound:

|fYε − gYε | ≤ 2φn′,ε(|νy|)
∫
φ(R)
n,ε (r)

∣∣∣∣e− r2

2ε2
δ⊤ cosh

(
r2

2ε2
νy · δ⊥

)
− J−1

x

∣∣∣∣ dPX
≤ 2ε−N

∥∥∥∥e− r2

2ε2
(1−|δ⊤|−|νy ·δ⊥|) + e−

r2

2ε2
cX r

|sin cX r|

∥∥∥∥
∞

≤ 2ε−N
[
1 +

(
12
11

)n−1
]
≤ 2n+1ε−N

For the remaining results we first bound the integrand function more carefully using

Lemma 4.2.6:

Ψ :=

∣∣∣∣e− r2

2ε2
δ⊤ cosh

(
r2

2ε2
νy · δ⊥

)
− Jx(x̃)

−1

∣∣∣∣
≤ ∆⊤ +∆⊥ +∆⊤∆⊥ +∆J−1

≤
c2X
4ε2

(
e

r2

8ε2 r4 +
1

2
e

r2

5ε2 r2 e
|νy |2
5ε2 |νy|2

)
+

c4X
32ε4

e
3r2

8ε2 r6 e
|νy |2
5ε2 |νy|2 + n−1

4 c2X r
2 (4.2.4)

Let δ ∈ [0, 1]. We have, by switching order of integration, exploiting the νy sym-
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metry of the integrand to eliminate Θo, and integrating dV n(x) with respect to a

geodesic normal coordinate system parameterized by τ ∈ Tx̃X :

∥fYε − gYε∥(δ);cX =

∫
X

∫
UX

|fYε(y)− gYε(y)|(1 + cX |y|)δ dmN (y) dPX(x̃)

≤ 2EX̃

∫∫
(1 + cX |y|)δφ(R)

n′,ε(|νy|)φ
(R)
n,ε (r) |Ψ(x̃, xy, νy)|Θ(xy, νy) dm

n′
dV n

≤ 2EX̃

∫∫
(1 + cX |y|)δφ(R)

n′,ε(|νy|)φ
(R)
n,ε (r) |Ψ|

(
1 + 1

4c
2
X r

2
)n−1

Θe dm
n′
dmn

If δ = 0 we can immediately combine this with (4.2.4), Corollary 2.5.3, and Lemma

4.2.7 to obtain an L1 bound. While the precise bound is messy, it is easily seen to be

O
(
(cX ε)

2
)

with bounding constant depending only on n,N .

If δ ∈ (0, 1] we have (1 + cX |y|)δ ≤
[
(1 + cX |x̃|)δ + (cX |y − x̃|)δ

]
. Since |y − x̃| ≤

√
2R we have ∥fYε − gYε∥(δ);cX ≤ (1+∥PX∥(δ);cX )∥fYε − gYε∥1 ≤ 2∥PX∥(δ);cX ∥fYε − gYε∥1.

We also have the νy-even and odd parts of gYε = ge + go, respectively:

ge := φn′,ε(|νy|)
∫
φ(R)
n,ε (r) J

−1
xy (x̃) dPX(x̃) = φn′,ε(|νy|)fXε(xy)

go := φn′,ε(|νy|)
∫
φ(R)
n,ε (r) J

−1
xy (x̃) tanh

(
− r2

2ε2
νy · δ⊥

)
dPX(x̃)

Lemma 4.2.9. For R ≤
(√

2cX
)−1 we have

0 ≤ hN (ge)− hN (gYε)−
[∫∫

(log ge) goΘo dm
n′
dV n

]
≤ const(n,N)(cX ε)

2

Proof. Set ξ := go/ge when ge > 0. Since |tanh(s)| < 1 for all s ∈ R, |ξ| < 1. We

will also write σ(y, x̃) := −dX (xy ,x̃)2

2ε2
νy · δ⊥(x̃) for brevity. Since dmn′

(νy) is symmetric
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under νy 7→ −νy, we can symmetrize the entropy integrand using Θe and Θo:

hN (ge)− hN (gYε) =

∫∫
[gYε log gYε − ge log ge]Θ dmn′

dV n

=
1

2

∫∫
[(ge + go) log(ge + go)− ge log(ge)](Θe +Θo)+

+ [(ge − go) log(ge − go)− ge log(ge)](Θe −Θo) dm
n′
dV n

=

∫∫
ψ(ξ)ge + ge(log ge) ξΘo dm

n′
dV n

=

∫∫∫
φ
(R)
n′,ε(|νy|)φ

(R)
n,ε (r) J

−1
xy (x̃)ψ(ξ) dmn′

dV ndPX+

+

∫∫
(log ge) goΘo dm

n′
dV n

where the auxiliary function ψ is defined on (−1, 1) by

ψ(t) :=
Θe +Θo

2
(1 + t) log(1 + t) +

Θe −Θo

2
(1− t) log(1− t)

Since |ξ| < 1 and Θe(xy, νy) − Θo(xy, νy) = Θ(xy,−νy) > 0, it is easily checked that

ψ(0) = 0, ψ′(t) ≥ 0 for t > 0 and ≤ 0 otherwise, and ψ′′(t) ≥ 0. Hence ψ is convex

and non-negative. Non-negativity immediately gives

0 ≤ hN (ge)− hN (gYε)−
∫∫

(log ge) goΘo dm
n′
dV n

By convexity we can apply Jensen’s inequality with the probability measure defined

(for fixed y) by dµ(x̃) = ge(y)
−1φ

(R)
n,ε (dX (xy, x̃)) J

−1
xy (x̃) dPX(x̃):

geψ(ξ) = geψ

[∫
tanhσ dµ(x̃)

]
≤
∫
ψ(tanhσ)φ(R)

n,ε (r) J
−1
xy (x̃) dPX(x̃)
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With some algebraic manipulation we have, for all s ∈ R,

ψ(tanh(s)) = Θe[s tanh s− log(cosh s)] + Θo[s− tanh(s) log(cosh s)]

Setting s = σ, parameterizing xy in geodesic normal coordinates τ ∈ Tx̃X ≈ Rn, and

using |tanh s| ≤ s and 0 ≤ log(cosh s) ≤ 1
2s

2(cosh s),

hN (ge)−hN (gYε)−
∫∫

(log ge) goΘo dm
n′
dV n

≤
∫∫∫

φ
(R)
n′,ε(|νy|)φ

(R)
n,ε (r) J

−1
xy (x̃)[σ tanhσ − log(coshσ)]Θe dm

n′
dV ndPX

+

∫∫∫
φ
(R)
n′,ε(|νy|)φ

(R)
n,ε (r) J

−1
xy (x̃)[σ − log(coshσ) tanhσ]Θo dm

n′
dV ndPX

≤
∫∫∫

φ
(R)
n′,ε(|νy|)φ

(R)
n,ε (r) η(r)|σ|

2Θe dm
n′
dmndPX

+

∫∫∫
φ
(R)
n′,ε(|νy|)φ

(R)
n,ε (r) η(r)

[
|σ| ∨ 1

2
|σ|3(coshσ)

]
|Θo| dmn′

dmndPX

Since |σ|l ≤
[
r2

2ε2

]l
[cX |νy|]l, and |Θo| ≤ const(n,N)(cX |νy|), the above terms are all

of the form const(n,N)( r
2

2ε2
)l(cX |νy|)2 for l ∈ {1, 2, 3}, multiplied by ϕ(R)

n′,ε(|νy|)ϕ
(R)
n,ε (r).

The result follows by integration.

Remark. The following scaling properties are straightforward to verify, and will be

used in the subsequent two lemmas: if we scale lengths in RN by a factor of a > 0,

the densities gYε , ge, go, etc. scale by a factor of a−N , while densities on X scale by

a−n; The volume elements dmn′ and dV n scale by factors of an′ and an, respectively;

Jacobian factors Θe,Θo, Jx, and 1-norms of densities such as ∥ge∥1 are unchanged;

cX scales like a−1; ε scales like a; Entropies change additively as log of volume, e.g.

hN (qe) 7→ hN (qe) + log aN . Hence, (cX ε) is scale-invariant, as is any difference of two

entropies of the same dimension.
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Lemma 4.2.10. Let R ≤
(√

2 cX
)−1 and δ ∈ (0, 1]. We have

∣∣∣∣hN (qe)− ∥ge∥−1
1 hV n(fXε)−

n′

2
log(2πeε2)

∣∣∣∣ ≤ const(n,N)δ−1∥PX∥(δ)(cX ε)
2 log(cX ε)

−1

Proof. Note that |∥ge∥1 − 1| ≤ const(n,N)(cX ε)
2. We have

hN (ge) =

∫∫
ϕ
(R)
n′,ε(|νy|)ΘefXε

[
log f−1

Xε
+
n′

2
log(2πε2) +

|νy|2

2ε2

]
dmn′

dV n

= hV n(fXε) + ∥ge∥1
n′

2
log(2πeε2) +

∫∫
ϕ
(R)
n′,ε(|νy|)(Θe − 1)fXε log f

−1
Xε

dmn′
dV n

+

∫∫
fXε(xy)ϕ

(R)
n′,ε(|νy|)[Θe(y)− 1] dmn′

dV n

Since |Θe − 1| ≤ const(n,N)(cX |νy|)2, the final term can be bounded in absolute value

by const(n,N)(cX ε)
2. The result follows if we can bound the term

∫∫
ϕ
(R)
n′,ε(|νy|)(Θe −

1)fXε log f
−1
Xε

dmn′
dV n, which is bounded as follows:

∫∫
ϕ
(R)
n′,ε(|νy|)|Θe − 1|fXε

∣∣log f−1
Xε

∣∣ dmn′
dV n ≤ const(n,N)(cX ε)

2

∫
fXε

∣∣log f−1
Xε

∣∣ dV n

≤ const(n,N)(cX ε)
2

[
hV n(fXε) + 2

∫
fXε>1

fXε log fXε dV
n

]

≤ const(n,N)(cX ε)
2
[
hV n(fXε) + 2∥fXε∥1 log

+∥fXε∥∞
]

By definition, ∥fXε∥∞ ≤
[

2−1/2

sin(2−1/2)

](n−1)(
2πε2

)−n/2 ≤ ε−n, so this bound is finite.

Furthermore, since the quantities hN (ge) − ∥ge∥−1
1 hV n(fXε) − n′

2 log(2πeε2), ∥fXε∥1,

and (cX ε) are scale-invariant, we are free to set any scale convenient for bounding.

Scale lengths by a = ε−1, so ε̃ = 1 and c̃X = cX ε. This removes the log+∥fXε∥∞ piece
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of the bound, and applying Corollary 3.4.3 gives the bound

hV n(fXε̃) ≤ e3
[(
2 +Nδ−1

)
∨ log(κN,nωn) + n log(cX ε)

−1
]
∥fXε∥(δ)

where we used the scale-invariance of ∥fXε∥(δ) and the fact that log∥fXε∥
−1
(δ) ≤ |1− ∥fXε∥1| ≤

const(n,N)(cX ε)
2. The result follows by noting that hN (qe) = ∥ge∥−1

1 hN (ge)+log∥ge∥1

and log∥ge∥1 ≤ const(n,N)(cX ε)
2.

Lemma 4.2.11. Let R ≤
(√

2 cX
)−1. Set ce := ∥ge∥1, co := ∥gYε∥1 − ce ≡

∫
go dm

N .

Define the probability densities qYε := (ce + co)
−1gYε and qe := c−1

e ge. We have

|hN (qe)− hN (qYε)| ≤ const(n,N)δ−1∥PX∥(δ)
[
(cXR)

2 + (cX ε)
2
]
log(cX ε)

−1

Proof. Set c2 :=
∫∫

|goΘo| dmn′
dV n. We have, using anti-symmetry, |tanh(s)| ≤ s,

|σ| ≤ r2

2ε2
cX |νy|, and |Θo| ≤ const(n,N)cX |νy|:

|co| =
∣∣∣∣∫∫ goΘ dmn′

dV n

∣∣∣∣ = ∣∣∣∣∫∫ goΘo dm
n′
dV n

∣∣∣∣ ≤ c2

c2 ≤
∫∫∫

φ
(R)
n′,ε(|νy|)φ

(R)
n,ε (r)

r2

2ε2
cX |νy|J−1

x (x̃)|Θo(xy, νy)| dmn′
dV n dPX

≤ const(n,N)

∫∫∫ [
χ(R)
n,ε

r2

ε2
η(r)

][
φn′,ε(|νy|)(cX |νy|)2

]
dr dmn′

dPX

≤ const(n,N)(cX ε)
2

We also have, from previous estimates, |ce − 1| ≤ const(n,N)(cX ε)
2.

By the definition of entropy, when ∥q∥1 = 1, h(c q) = c h(q)− c log c, so

hN (ge)− hN (gYε) = ce
[
hN (qe)− hN (qYε) + log

(
1 + c−1

e co
)]

+ co[log ce − hN (qe)]
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Thus Lemma 4.2.9 can be written

0 ≤hN (qe)− hN (qYε) + log

(
1 +

co
ce

)
+

co
ce + co

log ce −
co

ce + co
hN (qe)

+
1

ce + co

∫∫ [
log g−1

e

]
goΘo dm

n′
dV n ≤ const(n,N)(cX ε)

2

Note that, since log g−1
e = n′

2 log(2πε2) +
|νy |2
2ε2

+ log f−1
Xε

,

∫∫ [
log g−1

e

]
goΘo dm

n′
dV n = co

n′

2
log(2πε2) +

∫∫ |νy|2

2ε2
goΘo dm

n′
dV n+

+

∫∫ [
log f−1

Xε

]
goΘo dm

n′
dV n

Furthermore,
∣∣∣∫∫ |νy |2

2ε2
goΘo dm

n′
dV n

∣∣∣ ≤ const(n,N)(cX ε)
2, which can be shown by

the same method used above to bound c2. Combining these inequalities, the bound of

co, and the hN (qe) estimate (Lemma 4.2.10) we have, after some algebra, and setting

gXε
:= c−1

e fXε , so that
∣∣hV n(gXε)− c−1

e hV n(fXε)
∣∣ = ∥fXε∥1

ce
log ce ≤ const(n,N)(cX ε)

2,

|hN (qe)− hN (qYε)| ≤
∣∣∣∣∫∫ [log g−1

Xε
− hV n(gXε)

]
goΘo dm

n′
dV n

∣∣∣∣
+ const(n,N)δ−1∥PX∥(δ)(cX ε)

2 log(cX ε)
−1

Since |goΘo| ≤ const(n,N)R2
(
cX |νy|ε−1

)2
φn′,ε(|νy|)gXε(xy), we have

∣∣∣∣∫∫ [log g−1
Xε

− hV n(gXε)
]
goΘo dm

n′
dV n

∣∣∣∣ ≤
≤ const(n,N)(cXR)

2

∫ ∣∣log g−1
Xε

− hV n(gXε)
∣∣gXε dV

n
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Finally, note that

∫ ∣∣log g−1
Xε

− hV n(gXε)
∣∣gXε dV

n =

∫ [
log g−1

Xε
− hV n(gXε)

]
gXε dV

n+

+

∫
{gXε>exp(−hV n (gXε ))}

2[log gXε + hV n(gXε)]gXε dV
n

=

∫
{gXε>exp(−hV n (gXε ))}

2[log gXε + hV n(gXε)]gXε dV
n

≤ 2∥gXε∥1[hV n(gXε)− log∥gXε∥∞]

We have ∥gXε∥∞ ≤ c−1
e ε−n. As in the previous lemma, our expressions are scale-

invariant, and we obtain a bound

∫ ∣∣log g−1
Xε

− hV n(gXε)
∣∣gXε dV

n ≤ const(n,N)∥PX∥(δ) log(cX ε)
−1

which completes the proof.

4.3 Power-Constrained Channel Capacity

For 2 ≤ n ≤ N , let Ω be a compact (n − 1)-dimensional differentiable submanifold

of SN−1, i.e., a compact submanifold of RN such that |ω| = 1 for all ω ∈ Ω. Define

X = Ω × R+ = {rω : r > 0, ω ∈ Ω} and a channel X → Y = RN by AWGN of average

power ε2. We impose the average power constraint E|X|2 ≤ nP. Define SNR := P
ε2

.

Theorem 4.3.1 (Average Power-Constrained Asymptotic Channel Capacity). As

SNR → ∞, the capacity of the channel described above is asymptotically given by

Cap(SNR) ≈ n

2
log(1 + SNR) + log

V n−1(Ω)

V n−1(Sn−1)
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For SNR > 1 the rate of convergence is bounded from above and below as follows:

−const(N, cΩ)

(
1

SNR

) n
n+2

log3(SNR) ≤ Cap(SNR)−
[
n

2
log(1 + SNR) + log

V n−1(Ω)

V n−1(Sn−1)

]
≤ const(N, cΩ)

(
1

SNR

) N
N+2

log3(SNR)

To prove the theorem we first maximize hV n(X):

Lemma 4.3.2. hV n(X) is maximized when P−1/2|X| is distributed as χn and X̂ :=

X/|X| is distributed uniformly over Ω, independent of |X|. The achieved maximum

entropy is

hV n(X) =
n

2
log(2πeP) + log

V n−1(Ω)

V n−1(Sn−1)

Proof. Expressing entropy in the
(
|X|, X̂

)
polar coordinates:

h(X) = hdr×V n−1

(
P|X|,X̂

)
+ E log|X|n−1

=
[
h(|X|) + E log|X|n−1

]
+
[
hV n−1

(
X̂
)]

− I
(
|X|; X̂

)

The sum is maximized when P|X| ⊥ PX̂ and the bracketed terms are individually

maximized. By Lemma 3.1.1, hV n−1(X̂) has maximum log V n−1(Ω), achieved by the

uniform pdf
[
V n−1(Ω)

]−1
dV n−1 on Ω. To maximize the first term, note that in the

special case of N = n and Ω = Sn−1, X = Rn, and we maximize hV n(X) with Xg ∼

N (0,PIn). In this case in polar coordinates we have P|Xg | ⊥ PX̂g
, PX̂g

uniform on

Sn−1, and P|Xg |/P1/2 ∼ χn. This gives h(Xg) =
n
2 log(2πeP) = h(χn)+Eχn log|Xg|n−1+

log
∣∣Sn−1

∣∣, so for any P|X| satisfying E|X|2 ≤ nP we have h(|X|) + E log|X|n−1 ≤
n
2 log(2πeP)− log V n−1

(
Sn−1

)
, with this maximum achieved when P−1/2|X| obeys the

χn distribution.
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Proof of Theorem 4.3.1. We assume SNR > 1. By overall scale-invariance of SNR

and mutual information, we may assume without loss of generality that P = 1. Since

Ω ⊂ SN−1 and is compact, it is uniform with 1 < cΩ < ∞. Let α ∈ (0, 1) be number

we will choose later, and define

X (0) := {X ∈ X : |X|2 ≥ n(SNR)−α}

X (1) := {X ∈ X : |X|2 < n(SNR)−α} ≡ X \ X (0)

Y(0) := {Y ∈ RN : |Y |2 ≥ n
(
SNR−α)}

Y(1) := RN \ Y(0)

Also define the random variable K ∈ {0, 1} so that K = k ⇐⇒ X ∈ X (k), and put

ak := PK(k). Set PX(k) := PX|K=k, and similarly for Y (k)
ε , X

(k)
ε .

To prove the capacity estimate we need only develop the corresponding upper and

lower bounds on hN (Yε). These estimates each have pieces corresponding to X (0), the

“nice” piece, and X (1), where the uniformity assumptions break down.

First we look at the nice piece. Since the uniformity bounds scale like inverse length,

the (non-compact) submanifold-with-boundary X (0) is uniform with c0 ≡ cX (0) =

n−1/2(SNR)α/2cΩ ⇐⇒ (c0ε)
2 =

(
n−1c2Ω

)
(SNR)α−1. Also note that, if δ ∈ (0, 1] and

PX(0) ∈ P̂(X (0)) satisfies E|X|2 ≤ n then, by Jensen’s inequality, ∥PX(0)∥(δ);c0 ≤

1+ (
√
n c0)

δ ≤ 1+ c δΩ (SNR)αδ/2 ≤ 2cδΩ(SNR)
αδ/2. Theorem 4.2.1 applies for sufficiently

high SNR. Applying the previous observations and using γ > 0, t ≥ 1 =⇒ log t =

γ−1 log tγ ≤ γ−1tγ to convert logs to exponents, we have (for γ ∈ (0, 1) to be specified
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later),

∣∣∣∣h(Y (0)
ε )− n′

2
log
(
2πeε2

)
− hV n(f

X
(0)
ε

)

∣∣∣∣ ≤ const(N)δ−1∥PX∥(δ)
[
(c0ε) log(c0ε)

−1
]2

≤ const(N)δ−1∥PX∥(δ)
[
γ−1(c0ε)

1−γ
]2

≤ const(N)
c2+δ−2γ
Ω

δγ2

(
1

SNR

)(1−γ)(1−α)−δα/2

To obtain an upper bound on hN (Yε), hence also capacity, note that

hN (Yε) ≤ hN (Yε,K) = hN (Yε|K) +H(K)

≤ a0 hN (Y
(0)
ε ) +

[
a1 hN (Y

(1)
ε ) +H(K)

]

It is a straightforward exercise in calculus to show that that bracketed term is maxi-

mized when a1 =
[
1 + exp

(
h(Y

(1)
ε )

)]−1
, with maximal value log

[
1 + exp

(
−hN (Y (1)

ε )
)]

.

Since
∣∣X(1)

∣∣2 ≤ n(SNR)−α, hN (Y (1)
ε ) ≤ N

2 log
(
2πenSNR−α), and so

hN (Yε) ≤ a0 hN (Y
(0)
ε ) + const(N)SNR−Nα/2

Applying our estimate of hN (Y (0)
ε ) and Lemma 4.3.2, we have (once SNR is large

enough to guarantee hN (Y (0)
ε ) ≥ 0 so we may replace a0 with 1 in our bound)

I(X;Yε) ≤
n

2
log(SNR) + log

V n−1(Ω)

V n−1(Sn−1)
+ const(N, cΩ)δ

−1γ−2

(
1

SNR

)(1−γ)(1−α)−δα/2

+const(N)

(
1

SNR

)Nα/2

Setting α = 2
N+2 , γ = δ = [1 + log SNR]−1 completes the upper bound on capacity.

For the lower bound, we will use the following twice: if
∫
g dµ ≤ m, 0 ≤ g ≤ M ,
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and µ(supp(g)) ≤ V , then −m logM ≤ hµ(g) ≤ m log V
m . Set PX as in Lemma 4.3.2.

The second part of Theorem 4.2.1, for well-behaved PX , now also applies, so hn(fXε)

may be replaced by hn(X(0)) for the Y(0) piece of the hN (Yε) estimate. Since the χ

pdf is bounded we also have a1 ≡ PX(X (1)) ≤ const(N)SNR−nα/2, so the exclusion of

the X (1) piece in our hn(PX) estimate (omitted since Theorem 4.2.1 does not apply)

incurs an error bound |hn(1X (1)PX)| ≤ const(N)SNR−nα/2 log(SNR). Additionally,

since pYε ≤ const(N)SNRN/2, the Y(1) component of hN (Yε) may be bounded similarly

using our observation, as const(N)SNR−Nα/2. Combined we have the lower bound

estimate

I(X;Yε) ≥
n

2
log(SNR) + log

V n−1(Ω)

V n−1(Sn−1)
+ const(N, cΩ)δ

−1γ−2

(
1

SNR

)(1−γ)(1−α)−δα/2

+const(N)SNR−nα/2 log(SNR) + const(N)

(
1

SNR

)nα/2

Setting α = 2
n+2 , γ = δ = [1 + log SNR]−1 completes the lower bound, and the proof.
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5
Application to Radar Communication

Channel

In this chapter we examine in-depth the application of our main theorems to radar

and communications system spectrum sharing. This topic has been the subject of

much recent research from a variety of perspectives. For example, in [1] a joint radar

and communications channel is abstracted as a unified hybrid channel with rates of

both standard information transmission and of “radar estimation information” for

an existing, known radar target. Theoretical bounds on joint rates are developed in

this framework. While this approach is interesting, the actual radar operation has
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been abstracted to the point that no path towards implementation can be suggested

by the research. The the radar hardware, transmit waveforms, and signal processing

algorithms required to even approach the theoretical bound are all abstracted away,

remaining completely unaddressed.

Other recent work has focused on practical implementations. Perhaps the simplest

and most straightforward approach to spectrum-sharing is the use of time/frequency

hopping to prevent cross-interference, as explored in [8]. However, this technique pre-

cludes any mutually-beneficial cooperation between the radar and communication sys-

tems, such as allowing radar transmissions to act as an amplifier and repeater for com-

munication relays. For cooperation the radar waveform must be allowed to encode in-

formation by varying its transmit waveform. One approach is to designate an existing

family of radar waveforms as the coding alphabet, as is proposed in [6] for so-called

Oppermann sequences. However, fixing an ad-hoc family of waveforms is sub-optimal,

particularly in the high-SNR regime of interest in this dissertation.

By applying the results of Chapter 4, our approach lies somewhere between these

two extremes. In principle any family of radar waveforms, chosen for the desired ap-

plication, may be analyzed, and the corresponding high-SNR channel capacity, as a

function of the chosen waveform performance metrics, may be computed numerically.

In this chapter we present an extended study of a relatively simple, but realistic radar

system model.

5.1 Radar and Signal Processing Background

Consider a stationary narrowband radar transmitting the waveform s(t) supported

on [0, T ]. We assume Ŝ(f) ≡
∫∞
−∞ s(t)e−2πitf dt is concentrated in [f0 − W

2 , f0 +
W
2 ]
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where f0 is the carrier frequency and W the bandwidth. In this section, we normalize

to ∥s∥2 = 1 and AWGN of power spectral density ε2.

Compared to s(t), return scatter from a target at range d and radial velocity ḋ

relative the radar exhibits a time-delay τ = 2d
c and (narrowband) Doppler shift

σ = −2ḋ
c f0, where c is the speed of light. In addition, there is an overall scale fac-

tor due to losses, and an overall phase shift which is typically modeled as a uniform

random variable on [0, 2π], chosen independently for each target. Note that the tar-

get return Doppler shift is negligible in the regime |σT | ≪ 1, or equivalently, when

ḋT ≪ λ0, where λ0 is the wavelength corresponding to the center frequency. For

many common radars (e.g. air traffic control radars), this assumption holds true for

all realistic ḋ. In this paper we will neglect Doppler shift for simplicity, although it

can be accounted for, if necessary, using similar techniques.

If we define the time-shifted variant of s

sτ (t) ≡ s(t− τ)

then return from a scatterer can be written c · sτ (t) for some c ∈ C with uniform ran-

dom phase. The radar receives signal r(t) =
∑

k cksτk(t) + N(t), a superposition of

possible scatterers summed over a discretized, finite set of possible scatterer “bins”,

plus the random AWGN term N(t). It is typical to process this through matched fil-
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ters for the sτ ’s of interest:

f(τ) =

∫
r(t)sτ (t) dt

=
∑
k

ck

∫
s(t− τk)s(t− τ) dt+

∫
N(t)sτ (t) dt

=
∑
k

ck

∫
s(t)s(t+∆k) dt+N1

where ∆k ≡ τk− τ and N1 is complex-normal of variance ε2. If |f(τ)| ≫ ε we conclude

that a target is present at time-delay τ . It is well-known that the matched filter opti-

mizes SNR among linear filters in the case of a single target with ∆ = 0 and AWGN.

However, f(τ) may still be large in the absence of a target at τ , if there is a large tar-

get at τk ̸= τ and
∫
s(t)s(t + ∆k) dt is not very small. Therefore, it is desirable to

ensure low “sidelobes” in ∆.

If we restrict our signal processing to a matched filter, the low sidelobe requirement

must be enforced by requiring strict cross-correlation properties on s, which limits in-

formation capacity considerably. Instead we allow more flexibility in transmit signal

and attempt to adapt the filter to the chosen signal. To maintain processing time sim-

ilar to a matched filter, we consider an arbitrary normalized time-independent linear

filter defined for each τ by w ∈ L2 with ∥w∥2 = 1, as

f(τ) = ⟨wτ , r⟩

=
∑
k

ck⟨wτ , sτk⟩+ ⟨wτ , N⟩

=
∑
k

ckψw(∆k) +N1

where ψw(τ) ≡ ⟨w, sτ ⟩.
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The assumption of independent uniformly random phases of the ck and N implies

the following simple expression for E|f(τ)|2 in which all cross terms vanish:

E|f(τ)|2 = λ0

K∑
k=1

|ψw(∆k)|2
1

K
+ ε2

where we have assumed k ranges over all possible “bins”, targets are equally likely to

appear in any of the K bins, and a value λ0 ≡ E|ck|2 is specified based on judgment

of the frequency and scattering characteristics of typical targets tracked by the radar

in question. To quantify filter effectiveness it is reasonable to define signal using the

piece of E|f(τ)|2 contributed by the desired target, conditioned on that target appear-

ing at τ = 0. Up to a multiple of λ0, this is simply

Ss(w) = |⟨s, w⟩|2

To define interference power, first note that for s (approximately) band-limited to

[f0 − W
2 , f0 +

W
2 ], ψ(τ) = ⟨sτ , w⟩ is also band-limited to the same frequency interval,

so by the uncertainty principle its localization in τ is (approximately) bounded below

by the characteristic width W−1. Therefore, any w achieving reasonable gain on a

target at τ = 0 will also achieve some gain on targets |τ | ≲ T−1, and in defining

interference, it is desirable to exclude contributions from targets within this “guard

region” (In practice, the guard region width may be tweaked to adjust the trade-off

between resolution and interference suppression; our choice is representative). Average

interference is thus defined (again up to a multiple of λ0) by conditioning on targets
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outside the guard region, as

Is(w) =
∑

|∆k|≤T−1

|ψw(∆k)|2
1

K ′

where K ′ is the number of bins outside the guard region. However, we will be more

interested in the interference piece alone in what follows: For any λ ∈ [0, 1] we can

define

Rλ(t1, t2) := (1− λ)
∑

|∆k|≤T−1

s(t1 −∆k)s(t2 −∆k)
1

K ′ + λδ(t1 − t2)

and its associated quadratic form Rλ:

⟨w,Rλw⟩ =
∫∫

Rλ(t1, t2)w(t1)w(t2) dt1 dt2

Note that we can now write Is(w) = ⟨w,R0w⟩. For λ > 0 the Hermitian linear map

Rλ : L
2 → L2 is bounded and positive-definite, with eigenvalues bounded below by

λ. Hence it is invertible, with a well-defined Hermitian, positive-definite, invertible

square-root.

We write signal-to-interference-plus-noise ratio (SINR) associated to w and noise-

loading parameter λ ∈ [0, 1] is

SINRs(λ,w) :=
|⟨s, w⟩|2

⟨w,Rλw⟩
(5.1.1)

In particular, we define the signal-to-interference ratio associated to w by SIRs(w) =

SINRs(0, w). It is well-known, (e.g. by changing basis via w̃ = R− 1
2w, or using calcu-

lus of variations) that ratios of the form 5.1.1 are maximized among unit-normalized
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filters w, by

wopt =
R−1
λ s∥∥R−1
λ s
∥∥
2

(5.1.2)

The corresponding maximal SINRs(λ,w) thus achieved is easily computed to be
⟨
s,R−1

λ s
⟩
.

Depending on the specific operational needs of the radar, an acceptable transmit

waveform will often be desired to not only satisfy constraints on the achievable optimal-

filter SIR, but “double constraints” on the simultaneously achievable optimal-filter val-

ues of SIR and S. That is, we may require that every transmitted waveform possesses

an associated range filter which simultaneously achieves both a minimal SIR and a

minimal S. The following notations express this double waveform filter constraint

from two perspectives. The first seeks to maximize SIR while requiring a minimum

S, while the second reverses the relationship:

SIRα(s) := sup
{∥w∥2=1,Ss(w)≥α}

SIRs(w)

Sβ(s) := sup
{∥w∥2=1,SIRs(w)≥β}

Ss(w)

SIRα(s) is defined for all α ≤ 1. If R0 is invertible then SINRs(0, w) < ∞, and this is

the largest value of β for which Sβ(s) is defined.

Thus, if we demand only radar waveforms that may be signal processed to achieve

Ss ≥ α and SIRs ≥ β with the same filter, this is equivalent to requiring Φ1(s) ≡

SIRα(s) ≥ β ≡ c1. Alternately, this is equivalent to instead requiring Φ1(s) ≡ Sβ(s) ≥

α ≡ c1. Below we will use both variations as indicated.

Finally, we define a commonly-used radar waveform which we will use to bench-

mark the performance of our alphabet waveforms. For a specified transmit time T

and bandwidth W , a (symmetric, baseband) chirp is a complex waveform of constant
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amplitude and quadratic phase progression on [0, T ]:

schirp(t) = c eiπWT (t/T−1/2)2

The chirp is characterized by instantaneous frequency varying linearly in time and

sweeping out the specified bandwidth. It is commonly used as a radar transmit wave-

form because it is both simple to generate in hardware and achieves very good SIR

under a matched filter (i.e. taking w=schirp). We denote this SIR by βchirp.

5.2 Finite Dimensional Manifold Approximation

To represent our signal space in RN for a finite N , we note that s is time-limited and

approximately band-limited. Capacity is unaffected by shifting all s to baseband, so

WLOG we take s band-limited to [−W
2 ,

W
2 ]. A natural basis to consider are the so-

called prolate spheroidal wave functions, {ϕk}∞k=0: Let ι : L2([0, T ]) → L2(R) and

π : L2(R) → L2([−W
2 ,

W
2 ]) be the inclusion map and projection (i.e. restriction) map,

respectively. If we define P = π ◦ F ◦ ι : L2([0, T ]) → L2([−W
2 ,

W
2 ]), then the {ϕk} are

the orthonormal eigenbasis associated with the positive-definite, self-adjoint, compact

operator P ∗P : L2([0, T ]) → L2([0, T ]), guaranteed to exist by the spectral theorem.

They can be taken to be real-valued since it is easy to check that P ∗P is invariant

under conjugation. By convention, we order the ϕk’s by decreasing eigenvalues. By

definition, the eigenvalue λk always lies in (0, 1) and represents the fraction of energy

of ϕk that lies within the frequency band [−W
2 ,

W
2 ]. It is a well-known rule of thumb

(mathematically quantified in [7]) that the space of time- and approximately band-

limited functions is “approximately WT -dimensional”, which can be restated to assert

that (approximately) the first ⌊WT ⌋ eigenvalues λ1, . . . , λ⌊WT ⌋ are ≈ 1, and the rest
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are ≈ 0, with these approximations becoming exact in the limit at WT → ∞.

In addition to the requirement that s be approximately band-limited, a choice of

additional constraint(s), such as those described above, will be imposed, which we

denote generally as Φm(s) > cm, where m serves as an index to allow multiple in-

dependent constraints, if desired. For example, Φ1(s) may be SINRopt(s) and c1 an

appropriate minimum-acceptable value for radar use. For the applications considered

here, the Φm are C∞ functions of s; Most real-world application constraints can be

expected to also have nice regularity properties.

Now, let s ∈ L2 with be expressed as a (complex) linear combination of the prolate

spheroidal basis, s =
∑∞

k=0 s
kϕk with sk ∈ C. The total energy of s is ∥s∥22 and the

energy of s within the frequency interval [−W
2 ,

W
2 ] is ∥Ps∥22 = ⟨s, P ∗Ps⟩ =

∑
k |sk|2λk.

Therefore, requiring that s leak less than δ0 ≪ ∥s∥22 energy out of band is equivalent

to the following constraint on the sk:

∞∑
k=0

|sk|2(1− λk)δ
−1
0 < 1

This can be viewed geometrically as requiring that (sk) ∈ ℓ2 lie inside an infinite-

dimensional ellipsoid whose principal axes are the ϕk directions, with kth intercept

given by
(

δ0
1−λk

) 1
2 . For any s satisfying (5.2) and any K ≥ 1, let ΠKs ≡

∑K
k=1 s

kϕk be

the orthogonal projection of s onto SK ≡ Span{ϕ1, . . . , ϕK}. Since the λk are decreas-

ing in k, we have

∥s−ΠKs∥22 =
∞∑

k=K+1

|sk|2 ≤ δ0
1− λK

In particular, if we choose K ≳ WT , so that λK ≪ 1, then all s satisfying (5.2) are

within an L2 distance of ≲
√
δ0 of the K-dimensional complex ellipsoid obtained from

87



(5.2) by setting sk = 0 for k > K. Clearly, the information capacity of the radar

can only decrease if we restrict transmit waveforms s to lie in this K-dimensional sub-

space. One can use (5.2), plus the continuity of the constraints Φm, to derive an up-

per bound on the original capacity in terms of a reduced K-dimensional capacity with

slightly relaxed values for cm.

However, in applications to band-limited transmitters and receivers, there is a

cleaner approach; Operations of a band-limited system should not rely on being able

to detect small signal perturbations outside their nominal spectrum band, which, it

must be assumed, could contain significant interference. Since ϕk for k ≳ WT are

overwhelmingly concentrated outside the allowed band, they should not be used for

signal construction. An appropriate value K may be determined by examination of

the (numerically computed) λk associated to the product WT .

Now we can state the capacity problem of interest precisely. Let K ≳ WT and

Φm(s), cm be specified for m ≥ 1. Define Φ0(s) ≡ ∥P ◦ΠKs∥22 =
∑K

k=0 |sk|2λk, and let

c0 = 1− δ0 be the minimum fraction of transmit power required to fall in the specified

frequency band. Define the following sets

Ω = {s ∈ SK : ∥s∥2 = 1,Φm(s) > cm for all m ≥ 0}

X = R+ × Ω = {s ∈ SK : Φm(s) > cm for all m ≥ 0}

Ω is an open subset of S2K−1 = {SK : ∥s∥2 = 1}, the unit sphere in CK ≈ R2K . As

such, it is a smooth submanifold of RN (N = n = 2K), of (real) dimension 2K − 1.

By Theorem 2.1.3 it is in fact a submanifold-with-boundary for Lebesgue-almost-every

choice of realizable values of cm.

We define a communication channel X → Y = RN with AWGN of variance Σ =
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ε2IN . We wish to estimate the capacity, subject to some average power constraint on

E|X|2 ≤ nPa. Our main theorem shows that for Pa ≫ ε2, this channel capacity is

Cap(ε) ≈ K log

(
1 +

Pa
ε2

)
+ log

V 2K−1(Ω)

V 2K−1(S2K−1)

Thus, the constant term log V 2K−1(Ω)
V 2K−1(S2K−1)

may be considered a zeroth-order correction

of the standard K-dimensional Gaussian channel capacity, necessary to account for

the constraints Φm.

5.3 Numeric Application

In this section we choose realistic radar parameters and numerically compute the ra-

tio V 2K−1(Ω)
V 2K−1(S2K−1)

in order to estimate how the channel capacity varies with choice of

waveform constraint parameters. Our numerical methodology is detailed below.

For each chosen time-bandwidth product WT , we take K = ⌈WT ⌉. In MATLAB

we store the first K discrete prolate spheroidal sequences associated to WT , sampled

in time at a frequency that is large compared to W . This is an orthonormal basis

spanning the K-dimensional subspace from which all candidate radar transmit wave-

forms are drawn. We take the constraint c0 = 0.92, so that any candidate waveform

having more than 8% of its energy leak out of band is rejected. This value was cho-

sen to agree with the energy leakage of a standard “chirp” waveform of similar time-

bandwidth product. We use either Φ1(s) = SIRα(s) ≥ β or Φ1(s) = Sβ(s) ≥ α, as

indicated below, for appropriate values of α, β. The values for minimum signal α are

indicated below in absolute terms, with α ≲ 1 desirable (α by definition cannot ex-

ceed 1). Values for β are indicated below relative to the equivalent SIR achieved by

a standard chirp waveform of the same time-bandwidth product, in order to directly
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compare performance with a well-known and commonly-used radar waveform.

We compute V 2K−1(Ω)
V 2K−1(S2K−1)

by Monte Carlo simulation. We draw 10,000 random

vectors sampled from the distribution N (0, I2K), and normalize the results to obtain

uniform-random sampling of S2K−1. The constraints Φ0 and Φ1 are evaluated on each

sample, and V 2K−1(Ω)
V 2K−1(S2K−1)

is estimated by the fraction of samples which satisfy the

constraints.

The functions SIRα(s) and Sβ(s) must be evaluated numerically. They may be com-

puted efficiently, as we now explain. For λ ∈ [0, 1] we define the family of unit-normed

filters

wλ :=
R−1
λ s∥∥R−1
λ s
∥∥
2

Using the calculus of variations with Lagrange multipliers, it can be shown (e.g., [4])

that the {wλ}λ∈[0,1] form a family with the following useful properties: For any given

λ, wλ maximizes Ss(w) among all non-zero w that satisfy SIRs(w) ≥ SIRs(wλ). Con-

versely, wλ maximizes SIRs(w) among all non-zero w that satisfy Ss(w) ≥ Ss(wλ).

Finally, Ss(wλ) increases monotonically with λ, and SIRs(wλ) decreases monotonically

with λ.

Thus SIRα(s) may be efficiently computed as follows: compute wλ and Ss(wλ) for

some initial choice of λ. If the choice of α is achievable, finding the λ∗ satisfying

Ss(wλ∗) = α is a root-finding problem for a monotonic function in a single variable–

a very straightforward task. An α ∈ [0, 1] fails to be achievable only if Ss(w0) > α, in

which case SIRα(s) = SIRs(w0). A similar procedure allows computation of Sβ(s) for

appropriate values of β. Furthermore, the matrix inversion required to compute wλ

may be done once for all λ via a single diagonalization of R0.
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5.3.1 SIRα(s) Constraint

Here we take WT = 10 and Φ1(s) = SIRα(s) for several reasonable choices of α. For

each α we plot the sample distribution of SIRα computed from the Monte Carlo sim-

ulation. The signal-to-interference ratio is expressed in decibels relative to βchirp, the

SIR of a chirp waveform under matched filter, for WT = 10. With this information

we compute the asymptotic loss of channel capacity log V 2K−1(Ω)
V 2K−1(S2K−1)

(relative to the

equivalent unconstrained Gaussian channel) as a function of the minimum SIRα(s) re-

quired, i.e. the choice of c1 in our constraints. The capacity loss is expressed in bits

per transmitted radar pulse. The plot demonstrates the trade-off between channel ca-

pacity and the basic characteristics imposed on radar transmit waveforms in order to

achieve a desired level of performance.
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Figure 5.1: Sample distribution of SIRα for α ∈ {0.7, 0.8, 0.9, 0.95, 1}.
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Figure 5.2: Asymptotic capacity loss relative to Gaussian channel for α ∈ {0.7, 0.8, 0.9, 0.95, 1},
as a function minimum acceptable waveform SIR.
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5.3.2 Sβ(s) Constraint

Keeping WT = 10, here we take Φ1(s) = Sβ(s) for a few choices of β, taking the val-

ues {−5,−3, 0, 3, 5} in dB relative to the SIR of the chirp with matched filter, βchirp.

The resulting sample distributions are plotted. The asymptotic capacity loss is plot-

ted as a function of the minimum signal c1 (expressed in dB, with negative values

indicating loss relative to the matched filter). At the left end of the plot we see that

nearly all candidate waveforms have a filter that achieves any of the desired SIR. How-

ever, moving towards the right end of the chart we see that, if we require the filter

to simultaneously maintain a very high signal, the fraction of acceptable waveforms

(hence asymptotic capacity) drops precipitously.

−5 −4 −3 −2 −1 0
Signal Loss (dB)

S
am

pl
e 

D
is

tr
ib

. 

 

  −5 dB
 −3 dB
  0 dB
  3 dB
  5 dB

Figure 5.3: Sample distribution of Sβ for 10 log10 β
βchirp

∈ {−5,−3, 0, 3, 5}.
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Figure 5.4: Asymptotic capacity loss relative to Gaussian channel for
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β
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∈ {−5,−3, 0, 3, 5}, as a function minimum acceptable waveform S.
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5.3.3 Sβchirp Constraint with varying time-bandwidth product

Finally, we take several choices of time-bandwidth product WT ∈ {10, 20, 30, 50, 100}

and take Φ1 = Sβchirp , where βchirp is the SIR of the chirp waveform and matched filter

corresponding to the chosen WT . Our plot of asymptotic capacity loss is normalized

by the nominal degrees of freedom WT for the sake of comparison. With this nor-

malization, the asymptotic capacity loss curve appears to be largely independent of

time-bandwidth product.
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Figure 5.5: Sample distribution of Sβchirp for WT ∈ {10, 20, 30, 50, 100}.
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Figure 5.6: Asymptotic capacity loss per degree of freedom, relative to Gaussian channel for
WT ∈ {10, 20, 30, 50, 100}.
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6
Summary and Next Steps

Our work in this paper approaches two fundamental quantities of Information Theory

– entropy and capacity – from the mathematical perspectives of Real Analysis and

Differential Geometry, to develop novel estimation theorems with quantifiable error

bounds. We have shown the power of the general theory we have developed by the ap-

plication to the radar waveform capacity problem; The constraint equations imposed

by this problem seem extremely difficult even to write down and manipulate in closed

form, let alone to analyze for the purposes of computing an approximate channel ca-

pacity. The combination of our general asymptotic capacity analysis and a straight-

forward and efficient numerical routine allows us to elegantly sidestep this difficulty

entirely, at least in the high-SNR regime, to quantify the trade-off between effective
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radar operation and communication capacity.

We believe there are a number of other alphabet-constrained capacity problems

which are not amenable to a traditional capacity analysis which may be approached

using the techniques developed here. For example, a channel of broad interest is the

complex AWGN channel with both an average and a peak power constraint imposed

(see, for example, [11]). The peak power constraint may be considered in our con-

text to be an alphabet constrained to the closed ball B̄2. Our current capacity results

(Theorem 4.2.2 and Theorem 4.3.1) do not directly apply to this case, which contains

elements of both the compact case and the average-power-constrained case. We be-

lieve that, with follow on work, it may be possible to apply our general asymptotic

mutual information approximation theorem (Theorem 4.2.1) to analyze this case as

well.

We have been careful in this paper to develop estimates with quantifiable, com-

putable error bounds to the greatest degree possible. While our final results are stated

in terms of unspecified constants, it is possible, with a significant amount of work, to

compute an explicit error bound for our capacity estimate, thus converting an asymp-

totic high-SNR result into an explicit range inside which the exact channel capacity

is thus proven to lie. The bound will depend on the quantities specified throughout

the computation– notably, the geometric bounding constant cX , which may be diffi-

cult to compute in many cases, including the radar waveform capacity problem. New

numerical techniques would be required here. However, it is not hard to compute cX

for more explicitly described alphabet manifolds such as the closed ball B̄2. In either

case, future work towards the goal of explicit error bounds would only be of use if the

resulting capacity error bounds are typically small enough to give a non-trivial range

of possible capacities. This could require a careful accounting of error terms and ex-
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acting work attempting to estimate the induced errors as accurately as possible. It is

not a trivial exercise, but the ability to compute meaningful, exact capacity ranges for

a variety of SNR in our general setting would be an exciting development.

Another direction for refinement of our present results is the computation of higher

order terms in ε for our asymptotic approximation. A heuristic argument suggests

that we might view the input manifold X as approximated by small pieces of n-spheres

(and possibly other simplified spaces), whose radii are determined by the curvatures

of X in that area. This suggests that a higher order approximate capacity achieving

input distribution will vary with the local curvature of X . We believe that an expres-

sion for one or more additional higher order terms in ε may be computable, at least

for sufficiently tractable geometries, but not without significant additional research.

Finally, we limited our radar waveform capacity investigation to a single pulse

radar model for computational simplicity. In principle our approach can be extended

to other forms of radar. In particular, a pulse-Doppler radar, which emits a coherent

set of M pulses in order to process target Doppler from pulse-to-pulse phase shifts, is

of practical interest. Our methodology may be extended to this case with little addi-

tional theoretical analysis. However, as the M pulses must be processed coherently

for Doppler information, the natural application of our framework would be to con-

sider all M pulses together as a single code letter in a larger dimensional ambient

space. Appropriate additional alphabet constraints would need to be considered to

ensure effective Doppler processing. Finally, while the numerical approach used in

this paper to compute capacity extends easily to the pulse-Doppler radar scenario,

the dimensionality increases by a factor of M . In fielded pulse-Doppler radars M can

range anywhere from < 10 to > 1000, depending on the required Doppler resolution.

This will have a significant impact on time required for the computation, although it
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is certainly a tractable computation for modern institutional computational resources.
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